← 返回
基于自适应神经模糊推理系统与模糊FOPID先进控制的并网光伏-风电混合系统性能提升
Performance Improvement of Grid-Connected PV-Wind Hybrid Systems Using Adaptive Neuro-Fuzzy Inference System and Fuzzy FOPID Advanced Control With OPAL-RT
| 作者 | Moayed Mohamed · Zuhair Muhammed Alaas · Badr Al Faiya · Hossam Youssef Hegazy · Wael I. Mohamed · Saad A. Mohamed Abdelwahab |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 DAB 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 混合能源系统 ANFIS控制器 传统控制器 性能比较 实时仿真 |
语言:
中文摘要
本文研究基于自适应神经模糊推理系统(ANFIS)提升并网光伏-风电混合系统的控制性能,并与传统模糊分数阶PID(FOPID)及模糊PI控制器进行对比。针对可再生能源间歇性与非线性带来的控制挑战,ANFIS融合模糊逻辑与神经网络自学习能力,展现出更强的鲁棒性与适应性。通过OPAL-RT 4512平台实现实时仿真与实验验证,结果表明ANFIS在电压调节、谐波抑制及系统稳定性方面显著优于其他控制器,尤其在动态负载与环境变化下表现更优,有效促进可再生能源的可靠并网与智能电网发展。
English Abstract
This paper presented enhancing hybrid energy systems, specifically those combining photovoltaic (PV) and wind turbine sources, linked to the electrical grid with the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) control unit during implementation. Our study focuses on the comparative performance of the ANFIS controller against traditional Fuzzy Fraction-Order Proportional-Integral-Derivative, (FOPID) and Fuzzy Proportional-Integral, (PI) controllers. Hybrid energy systems present unique challenges due to renewable energy sources’ intermittent and non-linear nature. Conventional controllers, such as Fuzzy FOPID and Fuzzy PI, often struggle to manage these complexities effectively. The ANFIS controller, nevertheless, blends fuzzy logic’s qualitative reasoning with neural networks’ capacity for adaptive learning, offering a more robust and flexible solution. Through extensive simulations and real-world testing, we demonstrate that the ANFIS controller significantly outperforms both Fuzzy FOPID and Fuzzy PI controllers in key performance metrics. These include improved voltage regulation, lower total harmonic distortion (THD), and enhanced overall system stability and efficiency under varying load and environmental conditions. The findings highlight ANFIS’s potential as a better hybrid energy system control method, enabling more dependable and effective grid integration of renewable energy sources. This research contributes to advancing smart grid technologies and promoting sustainable and resilient energy infrastructure. Using the OPAL-RT 4512 platform, this paper generates a thorough real-time simulation and investigation of a hybrid PV/wind energy system. Real-time integration of intricate MATLAB/Simulink models is made possible by the OPAL-RT 4512, which makes it easier to accurately simulate real-world operational situations. At the beginning time the values and percentage modified ANFIS and Fuzzy FOPID give good controller compared Fuzzy PI, at time (0 to 0.4 sec) Fuzzy PI decrease in most results values percentage 20% compared two controller ANFIS and Fuzzy FOPID.
S
SunView 深度解读
该ANFIS与模糊FOPID控制技术对阳光电源光储混合系统具有重要应用价值。针对SG系列光伏逆变器与ST储能变流器的并网协同控制,ANFIS自适应学习能力可显著提升PowerTitan储能系统在光伏波动工况下的电压调节精度与谐波抑制性能。OPAL-RT实时验证方法可直接应用于阳光电源构网型GFM控制器的快速原型开发,缩短产品迭代周期。建议将ANFIS算法集成至iSolarCloud平台的智能控制模块,结合现有MPPT与VSG技术,实现光储混合系统的自适应参数优化,提升弱电网并网稳定性,特别适用于高比例新能源接入场景的ESS集成方案优化。