找到 7 条结果 · IEEE Transactions on Power Systems

排序:
储能系统技术 储能系统 机器学习 ★ 5.0

基于参数优化的AC感知直流最优输电切换问题

AC-Informed DC Optimal Transmission Switching Problems via Parameter Optimization

Babak Taheri · Daniel K. Molzahn · IEEE Transactions on Power Systems · 2025年6月

最优输电切换(OTS)问题通过联合优化线路通断状态与发电机出力以降低运行成本。结合交流潮流模型的非线性与线路状态的离散变量,使得AC-OTS成为计算困难的混合整数非线性规划问题。为应对该挑战,常采用直流潮流近似将其转化为混合整数线性规划(DC-OTS),但其在交流模型下常导致次优或不可行解。本文提出一种增强型DC-OTS模型,通过优化直流潮流参数,使其有功潮流逼近交流最优潮流中的视在功率分布,从而更准确刻画线路阻塞特性。数值结果表明,所提方法显著提升切换决策精度,在交流模型下评估时最高可降低44...

解读: 该AC感知DC-OTS优化技术对阳光电源PowerTitan大型储能系统及iSolarCloud智能运维平台具有重要应用价值。在电网侧储能场景中,该方法可优化储能系统参与电网拓扑重构时的充放电策略:通过参数优化的DC潮流模型快速计算线路切换方案,同时保证AC模型下的可行性,避免传统DC近似导致的功率...

电动汽车驱动 储能系统 SiC器件 机器学习 ★ 5.0

基于流形特征插值的静态测量到动态测量的保证转换

Guaranteed Conversion From Static Measurements Into Dynamic Ones Based on Manifold Feature Interpolation

Lihao Mai · Haoran Li · Yang Weng · Erik Blasch 等5人 · IEEE Transactions on Power Systems · 2025年2月

可再生能源渗透率上升及电动汽车等负荷波动导致电力系统稳定性问题,亟需动态测量技术。然而,高分辨率量测设备(如PMU)在配电网中数量有限,而低分辨率量测设备广泛存在。本文提出一种多分辨率数据插值方法,结合自编码器与曲率正则化实现最优插值设计,并引入物理信息神经网络(PINN)和随机物理信息神经网络(SPINN)以融合系统物理规律并处理不确定性。所提方法在输电与配电系统中均得到充分验证。

解读: 该多分辨率动态测量技术对阳光电源储能与光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可融合SCADA低分辨率数据与有限PMU高分辨率数据,通过流形插值实现全站动态状态估计,提升ST系列储能变流器的并网稳定性监测能力。对于分布式光伏场站,该方法可将SG逆变器的秒级功率数据插值为毫秒级...

光伏发电技术 储能系统 机器学习 ★ 5.0

一种低惯量电力系统中快速频率响应储备定容的在线方法

An Online Approach for Dimensioning Fast Frequency Response Reserve in a Low Inertia Power System

Akhilesh Panwar · Zakir Hussain Rather · Ariel Liebman · Roger Dargaville 等5人 · IEEE Transactions on Power Systems · 2024年7月

随着同步发电容量逐步退出及非同步电源比例上升,系统惯量下降导致频率失稳问题日益突出,传统慢速备用难以有效抑制频率跌落,亟需配置快速频率响应储备(FFR)。本文提出一种在线框架,用于量化现有光伏电站可提供的FFR容量。该框架采用基于机器学习的回归模型,预测不同运行条件下系统的频率变化率(RoCoF)和频率最低点,评估频率安全性,并分析网络阻抗与备用接入位置对频率改善的影响。结合系统安全与电气距离信息,提出聚类方法以避免过度采购FFR。算例表明,所提方法可在保障频率安全的前提下显著降低所需FFR容量...

解读: 该FFR在线定容技术对阳光电源ST系列储能系统和SG光伏逆变器产品线具有重要应用价值。研究提出的基于机器学习的RoCoF和频率最低点预测模型,可集成至iSolarCloud平台实现智能FFR容量规划,避免储能系统过度配置。其聚类方法结合电气距离优化备用布局,可指导PowerTitan储能系统在电网中...

储能系统技术 储能系统 SiC器件 微电网 ★ 5.0

基于机器学习增强的大规模并行暂态仿真方法用于大规模可再生能源电力系统

Machine-Learning-Reinforced Massively Parallel Transient Simulation for Large-Scale Renewable-Energy-Integrated Power Systems

Tianshi Cheng · Ruogu Chen · Ning Lin · Tian Liang 等5人 · IEEE Transactions on Power Systems · 2024年6月

可再生能源系统(RESs)在向绿色智能电网转型中起关键作用,但其受光照、风速等自然因素影响,具有复杂性与不确定性,给并网带来挑战。电磁暂态(EMT)仿真可有效研究RES并网问题,但现有方法受限于模型非线性和计算复杂度,难以实现大规模精细化仿真。本文提出一种面向数据、结合机器学习的CPU-GPU大规模并行EMT仿真方法,采用人工神经网络构建数据驱动的RES模型,并基于实体-组件-系统架构集成。模型训练依托传统物理EMT模型生成的数据,并通过MATLAB/Simulink验证。将RES元件组建成微网...

解读: 该机器学习增强的大规模并行EMT仿真技术对阳光电源具有重要战略价值。在PowerTitan储能系统和大型光伏电站并网设计中,可快速仿真数百万级SiC逆变器的暂态交互特性,400倍加速性能显著缩短产品开发周期。对ST系列储能变流器的构网型GFM控制策略优化尤为关键,能高效评估微电网场景下多台设备的协同...

风电变流技术 ★ 5.0

基于贝叶斯特征选择的区域风电功率预测

Regional Wind Power Forecasting Based on Bayesian Feature Selection

Theodoros Konstantinou · Nikos Hatziargyriou · IEEE Transactions on Power Systems · 2024年4月

近年来,可再生能源在电力系统中的整合程度不断提高。其固有的不可预测性和输出波动给电力系统的安全运行和能源市场定价的稳定性带来了挑战。因此,准确预测可再生能源发电量至关重要。目前已应用的几种有效预测方法均基于机器学习(ML)。应用机器学习方法的一个关键因素是输入特征的选择,在区域风电预测中,这一任务变得更为复杂,因为区域范围可能涵盖整个国家。所提出的方法旨在通过一种数据驱动的、与模型无关的预处理技术精简输入特征,从而提高预测性能。该技术包括将多维数值天气预报数据划分为多个子区域,并剔除无信息的子区...

解读: 该贝叶斯特征选择的预测方法对阳光电源的储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器的智能调度优化方面,可将该预测算法集成到iSolarCloud平台,提升系统对风电功率波动的预判能力。通过筛选关键气象特征与历史数据,可优化储能系统的充放电策略,提高PowerTitan等大...

储能系统技术 储能系统 机器学习 ★ 4.0

面向不确定环境下电力系统决策的决策导向学习

Decision-Focused Learning for Power System Decision-Making Under Uncertainty

Haipeng Zhang · Ran Li · Qintao Du · Junyi Tao 等6人 · IEEE Transactions on Power Systems · 2025年8月

更精确的预测未必带来更优的决策。为此,决策导向学习(DFL)被提出,通过以决策损失替代传统统计损失,构建端到端的学习范式。近年来,DFL在电力系统中有所应用,但现有研究仍零散,缺乏系统的方法论梳理与比较基准。本文通过情景、分类、应用与对比分析,揭示统计精度与运行决策间的内在错配,建立基于模型结构(直接/间接)与梯度处理(基于/无需梯度)的DFL方法体系,综述现有应用,并开发开源基准平台,采用成本降低、预测精度和决策速度等电力指标评估模型性能,最后指出应用挑战并展望未来方向,为推动DFL向电网定制...

解读: 决策导向学习技术对阳光电源储能系统和智能运维平台具有重要应用价值。在PowerTitan大型储能系统中,可将DFL应用于充放电策略优化,通过直接优化运行成本而非预测精度,提升电网调峰调频的经济性。对于ST系列储能变流器,该方法可优化功率分配决策,在不确定性环境下降低决策损失。在iSolarCloud...

储能系统技术 储能系统 户用光伏 地面光伏电站 ★ 4.0

基于时空知识蒸馏的居民用户电力负荷预测

Electric Load Forecasting for Individual Households via Spatial-Temporal Knowledge Distillation

Weixuan Lin · Di Wu · Michael Jenkin · IEEE Transactions on Power Systems · 2024年4月

随着电网安全运行和家庭能源管理系统的发展,居民用户的短期负荷预测(STLF)日益重要。尽管机器学习在住宅STLF中表现有效,但本地设备的数据与资源限制制约了个体用户预测的精度。相比之下,电力公司拥有更丰富的数据和更强的计算能力,可部署基于图神经网络(GNN)等复杂模型,挖掘用户间的时空关联以提升预测性能。本文提出一种高效且保护隐私的知识蒸馏框架,通过将基于公用数据预训练的GNN模型中的时空知识迁移至轻量级个体模型,在不访问其他用户数据的前提下提升个体预测精度。在真实住宅负荷数据集上的实验验证了该...

解读: 该时空知识蒸馏负荷预测技术对阳光电源户用储能系统(如ST系列)和iSolarCloud平台具有重要应用价值。可将云端基于海量用户数据训练的GNN预测模型压缩至本地ESS控制器,在保护用户隐私前提下实现高精度负荷预测,优化储能充放电策略和光储协同控制。该轻量化模型可嵌入户用逆变器DSP/ARM芯片,降...