← 返回
储能系统技术 储能系统 机器学习 ★ 4.0

面向不确定环境下电力系统决策的决策导向学习

Decision-Focused Learning for Power System Decision-Making Under Uncertainty

作者 Haipeng Zhang · Ran Li · Qintao Du · Junyi Tao · Salvador Pineda · Georges Kariniotakis
期刊 IEEE Transactions on Power Systems
出版日期 2025年8月
技术分类 储能系统技术
技术标签 储能系统 机器学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 决策聚焦学习 电力系统 分类分析 应用分析 比较基准
语言:

中文摘要

更精确的预测未必带来更优的决策。为此,决策导向学习(DFL)被提出,通过以决策损失替代传统统计损失,构建端到端的学习范式。近年来,DFL在电力系统中有所应用,但现有研究仍零散,缺乏系统的方法论梳理与比较基准。本文通过情景、分类、应用与对比分析,揭示统计精度与运行决策间的内在错配,建立基于模型结构(直接/间接)与梯度处理(基于/无需梯度)的DFL方法体系,综述现有应用,并开发开源基准平台,采用成本降低、预测精度和决策速度等电力指标评估模型性能,最后指出应用挑战并展望未来方向,为推动DFL向电网定制化模型发展提供研究路径。

English Abstract

More accurate forecasts may not necessarily lead to better decision-making. To address this challenge, decision-focused learning (DFL) has been proposed as a new branch of machine learning that replaces traditional statistical loss with a decision loss to form an end-to-end paradigm. Applications of DFL in power systems have been developed in recent years. However, existing applications remain fragmented without systematic analysis of methodologies or comparative benchmarks. This review addresses this gap by performing a set of scenario analysis, taxonomy analysis, application analysis and comparative analysis. It first illustrates the inherent mismatch between statistical accuracy and operational decisions through power system example scenarios. It then establishes a structured taxonomy of DFL techniques, categorizing methods by model structure (direct/indirect) and gradient handling (gradient-based/free). An application-based analysis reviews existing DFL applications by forecasting targets and decision contexts. Furthermore, an open-source comparative benchmark is developed to assess different DFL models through power system-specific metrics like cost reduction, forecasting accuracy, decision speed, providing a baseline for future research. Finally, this paper identifies the challenges to adopting DFL in power systems and presents future research directions, offering researchers a roadmap to advance DFL beyond theoretical analysis into power grid-tailored models.
S

SunView 深度解读

决策导向学习技术对阳光电源储能系统和智能运维平台具有重要应用价值。在PowerTitan大型储能系统中,可将DFL应用于充放电策略优化,通过直接优化运行成本而非预测精度,提升电网调峰调频的经济性。对于ST系列储能变流器,该方法可优化功率分配决策,在不确定性环境下降低决策损失。在iSolarCloud平台中,DFL可改进传统预测性维护模型,将统计预测与运维决策端到端结合,直接优化备件调度和维护计划成本。该技术还可应用于光储协同控制,在光伏出力不确定条件下优化储能充放电决策,提升系统整体经济性。建议结合阳光电源实际运行数据建立定制化DFL模型,开发面向电网侧储能的决策优化工具链。