← 返回
光伏发电技术 储能系统 机器学习 ★ 5.0

一种低惯量电力系统中快速频率响应储备定容的在线方法

An Online Approach for Dimensioning Fast Frequency Response Reserve in a Low Inertia Power System

作者 Akhilesh Panwar · Zakir Hussain Rather · Ariel Liebman · Roger Dargaville · Suryanarayana Doolla
期刊 IEEE Transactions on Power Systems
出版日期 2024年7月
技术分类 光伏发电技术
技术标签 储能系统 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 快速频率响应储备 系统频率安全 在线框架 机器学习模型 聚类方法
语言:

中文摘要

随着同步发电容量逐步退出及非同步电源比例上升,系统惯量下降导致频率失稳问题日益突出,传统慢速备用难以有效抑制频率跌落,亟需配置快速频率响应储备(FFR)。本文提出一种在线框架,用于量化现有光伏电站可提供的FFR容量。该框架采用基于机器学习的回归模型,预测不同运行条件下系统的频率变化率(RoCoF)和频率最低点,评估频率安全性,并分析网络阻抗与备用接入位置对频率改善的影响。结合系统安全与电气距离信息,提出聚类方法以避免过度采购FFR。算例表明,所提方法可在保障频率安全的前提下显著降低所需FFR容量。

English Abstract

Rising frequency instability issues due to the phasing out of the synchronous generation capacity and the growing share of non-synchronous sources are creating concerns for power system security. The increasing volatility of system frequency due to diminishing system inertia and the inability of slow-acting reserves to contain the frequency decline have necessitated the procurement of the fast-frequency response reserve (FFR). Although such reserves can be procured from numerous sources that can deliver reserve power within seconds, quantifying such reserves is the immediate bottleneck. To address this issue, an online framework is proposed to size the FFR that can be obtained by existing solar photovoltaic plants. A machine learning-based regression model has been developed in the proposed framework to predict RoCoF and frequency nadir in varying system conditions and to assess system frequency security. Reserve distribution strategies that highlight the impact of network impedance and reserve delivery location on the overall improvement in frequency have been analyzed. Based on the system frequency security and the network information, an electrical distance-based clustering approach has been developed to avoid the excess procurement of the FFR. Case studies demonstrate that the proposed framework can effectively achieve the desired security with comparatively lower FFR.
S

SunView 深度解读

该FFR在线定容技术对阳光电源ST系列储能系统和SG光伏逆变器产品线具有重要应用价值。研究提出的基于机器学习的RoCoF和频率最低点预测模型,可集成至iSolarCloud平台实现智能FFR容量规划,避免储能系统过度配置。其聚类方法结合电气距离优化备用布局,可指导PowerTitan储能系统在电网中的最优接入位置选择。对于具备FFR能力的SG光伏逆变器,该框架可量化其频率支撑贡献,配合构网型GFM控制技术提升低惯量电网适应性。研究成果可直接应用于阳光电源储能-光伏协同调频方案,降低系统投资成本并提升频率安全裕度。