← 返回
基于改进GMM分割和DenseNet的遥感识别新方法
A Novel Remote Sensing Recognition Using Modified GMM Segmentation and DenseNet
| 作者 | Muhammad Waqas Ahmed · Moneerah Alotaibi · Sultan Refa Alotaibi · Dina Abdulaziz Alhammadi · Asaad Algarni · Ahmad Jalal |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 航空影像分类 分割技术 特征提取 优化算法 深度学习 |
语言:
中文摘要
航空图像准确分类是遥感关键任务,应用范围从土地覆盖制图、城市规划到灾害响应和环境监测。然而,标记数据有限、固有数据复杂性和高计算需求等挑战常阻碍传统方法性能。为应对这些挑战,我们提出创新框架,结合先进分割技术、多样化特征提取方法、优化算法和深度学习。我们方法始于新颖图割优化模糊GMM分割GC-GMM,确保精确目标识别和边界描绘。采用方位角平均特征提取、Haar小波变换和最大稳定极值区域MSER捕获涵盖纹理、频率和形状信息的丰富特征集。使用粒子群优化PSO融合和精炼这些特征,创建鲁棒信息表示。利用深度学习力量,DenseNet架构基于优化特征集实现卓越分类精度。该框架通过结合多样化特征提取技术与深度学习能力的优势,有效解决先前方法局限。优化算法使用进一步增强特征判别力,提升分类精度。
English Abstract
The accurate classification of aerial images is a crucial task in remote sensing, with applications ranging from land cover mapping and urban planning to disaster response and environmental monitoring. However, challenges such as limited labeled data, inherent data complexity, and high computational demands often hinder the performance of traditional methods. To address these challenges, we present an innovative framework that combines advanced segmentation techniques, diverse feature extraction methods, optimization algorithms, and deep learning. Our approach begins with novel Graph-cut Optimized Fuzzy GMM Segmentation (GC-GMM), ensuring precise object identification and boundary delineation. We employ Azimuthal Average Feature Extraction, Haar Wavelet Transform, and Maximally Stable Extremal Regions (MSER) to capture a rich set of features encompassing texture, frequency, and shape information. These features are fused and refined using Particle Swarm Optimization (PSO) to create a robust and informative representation. Leveraging the power of deep learning, a DenseNet architecture achieves superior classification accuracy based on the optimized feature set. This framework effectively tackles the limitations of previous methods by combining the strengths of diverse feature extraction techniques with deep learning capabilities. The use of optimization algorithms further enhances the discriminative power of the features, leading to improved classification accuracy.
S
SunView 深度解读
该遥感识别技术对阳光电源光伏电站监测和管理具有重要应用。阳光管理全球数百GW光伏电站,需要高效的遥感图像分析能力。该研究的分割和特征提取方法可应用于阳光iSolarCloud平台的卫星图像分析,自动识别光伏组件、阴影遮挡和环境变化。在大型地面电站中,该DenseNet分类器可实现电站区域规划、土地利用监测和植被管理。该GMM分割技术可优化组件边界识别,支持电站巡检和缺陷检测。结合阳光无人机巡检系统,该遥感技术可实现多尺度电站监控,从卫星到无人机到地面的全方位智能分析,提升运维效率和电站资产管理水平。