← 返回
电动汽车锂离子电池基于等效电路模型的荷电状态估计
On Equivalent Circuit Model-Based State-of-Charge Estimation for Lithium-Ion Batteries in Electric Vehicles
| 作者 | Fatma Ahmed · Khalid Abualsaud · Ahmed M. Massoud |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 锂离子电池 荷电状态估计 扩展卡尔曼滤波 无迹卡尔曼滤波 电动汽车 |
语言:
中文摘要
本文研究电动汽车锂离子电池SOC估计的先进模型方法。基于电化学阻抗谱建立三阶等效电路模型,采用粒子群算法辨识参数,对比扩展卡尔曼滤波EKF和无迹卡尔曼滤波UKF算法。结果显示UKF的RMSE和最大误差分别为1.06%和1.15%,优于EKF。EKF-UKF混合方法实现最优性能,RMSE仅0.2%,最大误差0.5%,为电动汽车实时电池监测提供高精度解决方案。
English Abstract
The State-of-Charge (SoC) of Lithium-Ion Batteries (LIBs) is a crucial parameter for Battery Management Systems (BMSs) used in Electric Vehicles (EVs). This paper presents a comprehensive study on the SoC estimation of LIBs using advanced model-based methods. The practical implications of this research are significant, as they provide a reliable and efficient approach to SoC estimation, enhancing the performance and lifespan of LIBs in real-world applications, particularly EVs. A third-order equivalent circuit model is employed for the LIB based on electrochemical impedance spectra test results, with model parameters identified using a particle swarm optimization algorithm. Two real-time model-based estimation algorithms, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), are compared for SoC estimation. A hybrid approach based on UKF and EKF is presented. The results demonstrate that the UKF outperforms the EKF in SoC estimation, with the root mean squared error (RMSE) and maximum error for SoC estimation being 1.06% and 1.15%, respectively. The hybrid EKF-UKF approach provides the best performance for SoC estimation, achieving the lowest root mean squared error (RMSE) of 0.2% and a maximum error of 0.5% for SoC estimation. This approach leverages the strengths of EKF and UKF, offering superior accuracy and robustness in real-time battery monitoring in EV applications.
S
SunView 深度解读
该SOC估计技术与阳光电源新能源汽车电驱控产品线高度相关。阳光电源车载OBC和电池管理系统需要高精度SOC估计算法来优化充电策略和电池保护。EKF-UKF混合算法可集成到阳光BMS中,提高电池状态估计准确性和充电效率。该技术结合阳光800V高压快充平台,可实现更安全高效的电池管理和更优的用户充电体验。