← 返回
基于数据驱动与非线性灵敏度函数的配电网光伏承载力研究
Research on PV Hosting Capacity of Distribution Networks Based on Data-Driven and Nonlinear Sensitivity Functions
| 作者 | Le Su · Xueping Pan · Xiaorong Sun · Jinpeng Guo · Amjad Anvari-Moghaddam |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年9月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏接纳能力 节点电压 数据驱动方法 非线性函数 麻雀搜索算法 |
语言:
中文摘要
电压计算对评估光伏承载力至关重要,但中压配电网精确参数与拓扑结构难以获取,导致传统潮流方法失效。为此,本文提出一种融合数据驱动与非线性函数的混合方法。首先,利用历史数据构建深度神经网络模型,实现潮流与电压-功率灵敏度的映射,降低计算耗时并提升精度;其次,基于潮流方程推导功率对电压的四阶泰勒展开式,用于外推光伏接入后超出历史范围的节点电压;最后,采用麻雀搜索算法求解光伏承载力。在IEEE 33和IEEE 69系统上的仿真验证了该方法在电压与承载力计算中的准确性。
English Abstract
Voltage calculations are critical for assessing photovoltaic hosting capacity; however, acquiring precise parameters and the topology of the medium voltage distribution networks poses a significant challenge, thereby rendering traditional power flow computational methods ineffective. To address this issue, this paper introduces a hybrid method that utilizes a data-driven approach in conjunction with nonlinear functions to determine node voltages. Firstly, a deep neural network model for distribution network's power flow and voltage-power sensitivity analysis is established using historical data. This model captures the data-driven error, which reduces time consumption and increases accuracy. Secondly, a fourth-order Taylor expansion of power to voltage is derived based on the power flow mathematical equation to extrapolate voltage. This is necessary because when photovoltaic generators are connected to the nodes, the load data often exceeds the historical data range, rendering neural networks inapplicable. Finally, the sparrow search algorithm is employed to determine the hosting capacity. The proposed methods are validated using IEEE 33 and IEEE 69 case systems, demonstrating that the data-driven approach, combined with nonlinear functions, can ensure the accuracy in obtaining node voltage and the hosting capacity.
S
SunView 深度解读
该数据驱动的光伏承载力评估技术对阳光电源SG系列光伏逆变器和iSolarCloud云平台具有重要应用价值。文章提出的深度神经网络潮流计算与非线性灵敏度分析方法,可直接集成到iSolarCloud智能运维平台,实现配电网光伏接入容量的快速评估与动态监测。对于SG逆变器的并网控制策略,该方法可基于历史运行数据预测电压越限风险,指导逆变器无功调节与有功限制功能的参数优化。结合麻雀搜索算法的承载力求解思路,可应用于ST储能系统的容量配置决策,通过储能削峰填谷提升光伏接入能力。该技术突破了传统潮流计算对精确网络参数的依赖,为阳光电源提供基于实测数据的分布式光伏并网解决方案,提升项目前期评估效率与并网安全性。