← 返回
储能系统技术 储能系统 深度学习 ★ 4.0

基于贝叶斯量子神经网络的高可再生能源渗透电力系统潮流计算

Bayesian Quantum Neural Network for Renewable-Rich Power Flow with Training Efficiency and Generalization Capability Improvements

作者 Ziqing Zhu · Shuyang Zhu · Siqi Bu
期刊 IEEE Transactions on Power Systems
出版日期 2025年9月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 潮流计算 大规模电力系统 可再生能源 贝叶斯量子神经网络 泛化能力
语言:

中文摘要

针对高比例可再生能源接入下大规模电力系统潮流计算面临的计算效率与泛化能力挑战,本文提出一种基于贝叶斯量子神经网络(BayesianQNN)的新型潮流计算模型。该模型利用量子计算提升训练效率,并通过贝叶斯方法动态更新对可再生能源不确定性的认知,显著增强对未见场景的泛化能力。为评估模型性能,引入有效维度和泛化误差界两项指标。结果表明,所提方法在训练效率与泛化性能方面均优于现有数据驱动方法,适用于未来稳态电力系统分析。

English Abstract

This paper addresses the challenges of power flow calculation in large-scale power systems with high renewable penetration, focusing on computational efficiency and generalization. Traditional methods, while accurate, struggle with scalability for large power systems. Existing data-driven deep learning approaches, despite their speed, require extensive training data and lacks generalization capability in face of unseen scenarios, such as uncertainties of power flow caused by renewables. To overcome these limitations, we propose a novel power flow calculation model based on Bayesian Quantum Neural Networks (BayesianQNNs). This model leverages quantum computing's ability to improve the training efficiency. The BayesianQNN is trained using Bayesian methods, enabling it to update its understanding of renewable energy uncertainties dynamically, improving generalization to unseen data. Additionally, we introduce two evaluation metrics: effective dimension for model complexity and generalization error bound to assess the model's performance in unseen scenarios. Our approach demonstrates improved training efficiency and better generalization capability, making it as an effective tool for future steady-state power system analysis.
S

SunView 深度解读

该贝叶斯量子神经网络潮流计算技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。在大规模新能源电站集群管理中,该算法可显著提升实时潮流计算效率,为ST系列储能变流器的功率调度提供快速决策支持。其对可再生能源不确定性的动态认知能力,可优化SG光伏逆变器与储能系统的协同控制策略,提升构网型GFM控制在弱电网场景下的稳定性。贝叶斯方法的泛化能力可增强智能诊断系统对未知运行工况的预测准确性,为预测性维护提供更可靠的理论基础,助力阳光电源在新型电力系统稳态分析领域的技术领先地位。