找到 3 条结果

排序:
储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

一种用于交流潮流计算的无监督物理信息神经网络方法

An Unsupervised Physics-Informed Neural Network Method for AC Power Flow Calculations

Bozhen Jiang · Chenxi Qin · Qin Wang · IEEE Transactions on Power Systems · 2025年7月

潮流(PF)计算对于电力系统分析至关重要。近年来,数据驱动方法作为一种有前景的加速潮流计算的途径应运而生。然而,这些方法需要高质量的标注数据,且往往存在泛化能力差的问题。为解决这些问题,本文提出了一种用于交流潮流计算的无监督物理信息神经网络(UPINN)方法。该方法遵循牛顿 - 拉夫逊法的一般过程。通过最小化基于有功和无功功率不匹配设计的物理信息损失函数,潮流方程可直接得到满足,而无需计算雅可比矩阵的逆。本文给出了所提出的UPINN训练方法收敛性的证明。在IEEE 24节点和118节点系统上的案...

解读: 该无监督物理信息神经网络潮流计算技术对阳光电源储能与光伏系统具有重要应用价值。在PowerTitan大型储能系统和光储一体化电站中,该方法可嵌入iSolarCloud云平台实现实时潮流分析,无需历史标注数据即可快速求解节点电压与功率分布,显著提升ST系列储能变流器的并网控制响应速度。对于构网型GFM...

储能系统技术 储能系统 深度学习 ★ 4.0

基于贝叶斯量子神经网络的高可再生能源渗透电力系统潮流计算

Bayesian Quantum Neural Network for Renewable-Rich Power Flow with Training Efficiency and Generalization Capability Improvements

Ziqing Zhu · Shuyang Zhu · Siqi Bu · IEEE Transactions on Power Systems · 2025年9月

针对高比例可再生能源接入下大规模电力系统潮流计算面临的计算效率与泛化能力挑战,本文提出一种基于贝叶斯量子神经网络(BayesianQNN)的新型潮流计算模型。该模型利用量子计算提升训练效率,并通过贝叶斯方法动态更新对可再生能源不确定性的认知,显著增强对未见场景的泛化能力。为评估模型性能,引入有效维度和泛化误差界两项指标。结果表明,所提方法在训练效率与泛化性能方面均优于现有数据驱动方法,适用于未来稳态电力系统分析。

解读: 该贝叶斯量子神经网络潮流计算技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。在大规模新能源电站集群管理中,该算法可显著提升实时潮流计算效率,为ST系列储能变流器的功率调度提供快速决策支持。其对可再生能源不确定性的动态认知能力,可优化SG光伏逆变器与储能...

储能系统技术 储能系统 SiC器件 ★ 5.0

基于物理雅可比信息的编码器-解码器神经网络用于非线性潮流回归

Physically Jacobian-Informed Encoder-Decoder ANNs for Nonlinear Power Flow Regression

Hao Yang · Kai Zheng · Wendong Su · Zhenglong Sun 等6人 · IEEE Transactions on Industry Applications · 2024年7月

潮流(PF)是电力系统稳态分析与控制的基础。传统的基于一组隐式非线性方程构建的模型驱动潮流计算方法采用牛顿 - 拉夫逊法进行迭代求解。然而,潮流计算的速度和收敛性会受到合适初值以及迭代过程效率的影响。数据驱动的潮流回归方法可以通过从潮流数据集学习显式映射函数来克服上述问题。但是,该方法仅实现了从潮流输入到输出的非线性映射,忽略了潮流计算中的物理规则,这可能导致精度和泛化能力较差。本文提出了一种基于物理雅可比信息的编解码器神经网络(NNs)用于潮流非线性回归。基于正向和反向潮流模型,构建了一种采用...

解读: 从阳光电源的业务实践来看,这项基于物理雅可比信息的神经网络潮流计算技术具有显著的工程应用价值。在新能源电站并网运行中,快速准确的潮流计算是实现主动电压支撑、功率调度优化和故障预判的基础。传统牛顿-拉夫逊迭代方法在高比例新能源接入场景下常面临收敛性问题,特别是在光伏、储能等分布式资源大规模并网时,系统...