← 返回
光伏发电技术 深度学习 ★ 5.0

使用卷积神经网络检测光伏组件玻璃裂纹

Using Convolutional Neural Networks to Detect In-Field PV Module Glass Cracks

作者 Savannah Bennett · Thomas Weber · Rory Bennett · Ernst Wittman · Oleksandr Mashkov · Christoph J. Brabec
期刊 IEEE Journal of Photovoltaics
出版日期 2025年9月
技术分类 光伏发电技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 双玻光伏组件 玻璃裂纹检测 卷积神经网络 实例分割 水分侵入
语言:

中文摘要

双玻光伏组件的应用日益广泛,人们对这些组件中的玻璃破裂问题也愈发关注。为证实这一现象、量化玻璃破裂率,并减轻在现场查找破裂组件的繁琐工作,本文考虑使用卷积神经网络进行玻璃裂纹检测。对七种模型进行了测试:六层模型、四层模型、VGG16、VGG19、ResNet18、ResNet34 和 ResNet50。在两个光伏(PV)场中采用非标准化图像采集方法,针对两种组件类型创建了七个标注数据集,图像数量从 3540 张到 12600 张不等。六层模型在裂纹与无裂纹分类方面的准确率可达 97.7%,使用 CPU 时每张图像的推理时间为 1.5 秒。更为复杂的 ResNet50 模型在分类测试中的准确率可达 99.7%,但每张图像的推理时间长达 10.5 秒。因此,本文表明,使用相对简单的卷积神经网络是一种以低计算成本检测光伏玻璃裂纹的可行方法。此外,使用 YOLOv11 实例分割模型对玻璃裂纹进行分割,其边界框精度、掩码精度、召回率和平均精度均值@50 可达 95.7%。这表明在不增加计算成本的情况下,自动检测系统也可实现分割功能。最后,使用近红外吸收光谱仪测量了两个组件的水分指数,结果表明,与组件其他部位相比,裂纹处的水分渗入量更高。

English Abstract

Double-glass photovoltaic modules are being increasingly deployed, and there is a growing concern about glass cracking in these modules. To confirm this phenomenon, to quantify the rates of glass cracking, and to alleviate the laborious task of finding these cracked modules in the field, this article considers the use of convolutional neural networks for glass crack detection. Seven models are tested: a six-layer model, a four-layer model, VGG16, VGG19, ResNet18, ResNet34, and ResNet50. Using a nonstandardized image acquisition method in two photovoltaic (PV) fields with two module types, seven labeled datasets have been created, ranging in size from 3540 to 12 600 images. The six-layer model can achieve crack versus no-crack classification accuracies of up to 97.7%, while the inference time per image using a CPU is 1.5 s. The more complex ResNet50 model achieves classification test accuracies up to 99.7%, but it has an inference time of up to 10.5 s per image. Thus, this article demonstrates that using a relatively simple convolutional neural network is a viable approach to detecting PV glass cracks with low computational cost. In addition, the YOLOv11 instance segmentation model is used to segment the glass cracks, and it achieves up to 95.7% in bounding box precision, mask precision, recall, and mean average precision@50. This demonstrates that segmentation can also be implemented on an automated inspection system without increasing computational costs. Finally, the water index on two modules was measured using a near-infrared absorption spectrometer, and the results suggest that there is higher water ingress along the cracks when compared with the rest of the modules.
S

SunView 深度解读

该CNN玻璃裂纹检测技术对阳光电源SG系列光伏逆变器配套的智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台的智能诊断模块,通过无人机巡检图像自动识别双面玻璃组件裂纹,实现预测性维护。该技术与阳光现有的IV曲线诊断、红外热成像分析形成互补,可提前发现因玻璃裂纹导致的组件功率衰减和安全隐患,降低电站运维成本。特别适用于大型地面电站和工商业分布式项目,结合MPPT算法优化可精准定位故障组串,提升系统发电效率与长期可靠性,为阳光电源全生命周期运维服务提供技术支撑。