找到 8 条结果
可解释的深度学习多电平逆变器故障检测方法
Explainable Deep Learning Fault Detection Method for Multilevel Inverters
作者未知 · IEEE Transactions on Industrial Informatics · 2025年1月
卷积神经网络(CNNs)在多种类型的多电平逆变器故障检测中展现出了巨大潜力。尽管卷积神经网络性能卓越,但其可解释性仍是一项挑战。这是因为网络具有复杂的黑箱行为。因此,它们在实际应用中广泛采用不同模型方面带来了重大挑战。此外,仅依靠准确率是不够的,特别是在关键应用中,保持可信度和鲁棒性对于保护系统免受潜在损害至关重要。因此,本研究采用了一种名为梯度加权类激活映射(Grad - CAM)的可视化解释方法用于多电平逆变器的故障检测。Grad - CAM方法能够识别模型的重要特征并解释故障类型的检测结果...
解读: 从阳光电源的业务视角来看,这项基于可解释深度学习的多电平逆变器故障检测技术具有重要的应用价值。作为全球领先的逆变器制造商,我们的产品线涵盖集中式、组串式及储能逆变器,其中多电平拓扑结构广泛应用于大功率场景。该技术通过卷积神经网络实现故障检测,并引入Grad-CAM可视化方法解决了深度学习"黑箱"问题...
基于Vague软集的海上风电功率区间预测
Interval Prediction of Offshore Wind Power Based on Vague Soft Sets
田书欣 · 朱峰 · 杨喜军 · 符杨 等5人 · 中国电机工程学报 · 2025年4月 · Vol.45
海上风电输出功率的精确预测是保障并网系统调度运行的关键。针对海上风电环境复杂、时空随机性强的特点,提出一种基于Vague软集的区间预测方法。通过融合Vague集的真伪隶属度函数,实现功率数据的Vague软区间化,并构建Vague-CNN-LSTM组合预测模型,将双隶属度概率向量转化为不确定环境下的预测区间。建立覆盖精度、区间宽度及综合水平等评估指标,验证结果表明该模型能有效兼顾预测精度与清晰性,适应不同运行工况需求。
解读: 该Vague软集预测方法对阳光电源的风电变流器和储能产品具有重要应用价值。可应用于ST系列储能变流器的功率预测与调度优化,提升系统响应速度和调节精度。该技术的双隶属度概率模型有助于提高PowerTitan储能系统在风电配套场景下的功率预测准确性,优化充放电策略。对iSolarCloud平台的智能运维...
基于白噪声注入数据增强的三电平NPC逆变器开路故障鲁棒诊断方法
Robust Open-Switch Fault Diagnosis of Three-Level NPC Inverters Based on Data Augmentation With White Noise Injection
Jiwon Jung · Dyan Puspita Apsari · Dong-Choon Lee · IEEE Transactions on Power Electronics · 2024年10月
本文提出了一种基于一维(1-D)卷积神经网络(CNN)的三电平中性点钳位逆变器实时故障诊断新方法。该方法将数据增强技术应用于仿真数据,提升了深度学习模型的泛化能力。这使得故障诊断模型即使在未经训练的系统条件下也具有较高的鲁棒性。在这种情况下,应用采用数据增强的一维卷积神经网络模型的性能优于未加入白噪声的相同模型,准确率最高可提高1.71%。此外,与使用实验数据训练的深度学习模型相比,使用经过数据增强的仿真数据训练的深度学习模型表现更佳。所提出的方法已通过离线测试仿真和实时深度学习算法实验得到验证...
解读: 从阳光电源的业务视角来看,这项基于一维卷积神经网络的三电平NPC逆变器开路故障诊断技术具有重要的战略价值。三电平NPC拓扑结构是我司大功率光伏逆变器和储能变流器的核心技术架构,该诊断方法直接契合我们在1500V及以上系统、集中式逆变器和大型储能PCS产品线的技术需求。 该技术的核心创新在于通过白噪...
基于卷积神经网络的功率器件结温监测
Junction Temperature Monitoring of Power Devices Using Convolutional Neural Networks
Zhiliang Xu · Huimin Wang · Xinglai Ge · Yichi Zhang 等6人 · IEEE Transactions on Industry Applications · 2025年3月
基于温度敏感电参数(TSEP)的方法能够实现功率器件结温的精确监测(JTM)。然而,大多数温度敏感电参数易受负载电流和器件老化的影响而产生误差,从而降低了结温监测的准确性。为解决这一问题,本文提出了一种基于卷积神经网络(CNN)模型的结温监测方法,以应对这两个因素带来的不利影响。在该方法中,选择开通集电极电流($I_{C}$)作为温度敏感电参数,并通过数学模型深入分析了开通集电极电流的温度特性。此外,通过大量双脉冲测试全面研究了开通集电极电流的参数相关性。考虑到实际中负载电流影响显著且频繁变化的...
解读: 该CNN结温监测技术对阳光电源功率器件热管理具有重要应用价值。可直接应用于ST系列储能变流器和SG系列光伏逆变器的SiC/GaN功率模块,通过实时监测IGBT/MOSFET结温实现预测性维护。相比传统TSEP方法,CNN自动特征提取克服了非线性补偿难题,无需额外传感电路即可从开关波形获取温度信息,适...
基于边缘2D-CNN轻量部署的ANPC逆变器多开路故障实时诊断
Real-Time Diagnosis of Multiple Open-Circuit Faults in ANPC Inverters Based on Lightweight Deployment of Edge 2D-CNN
Guangtong Ma · Chunxing Yao · Shuai Xu · Guanzhou Ren 等6人 · IEEE Transactions on Industrial Electronics · 2025年4月
摘要:多个开路(OC)故障严重影响了有源中点钳位(ANPC)逆变器的可靠运行。为实现对三电平ANPC(3L - ANPC)逆变器多个OC故障的快速准确检测,本文将轻量级卷积神经网络(CNN)部署到边缘计算板上。具体而言,所提出的在线诊断方法包括离线训练和在线部署。在离线训练阶段,设计了多源信息融合方法以促进有效特征提取,从而提高所设计CNN的预测精度。此外,采用特定的优化框架来简化离线训练过程。在在线部署方面,通过使用TensorRT实现训练好的CNN的轻量级设计,以降低计算成本并加快诊断速度。...
解读: 从阳光电源的业务视角来看,这项基于边缘计算的ANPC逆变器多重开路故障实时诊断技术具有重要的应用价值。ANPC(有源中点钳位)拓扑作为三电平逆变器的重要技术路线,在我司大功率光伏逆变器和储能变流器产品中已有广泛应用,其效率和功率密度优势明显,但多重开路故障一直是影响系统可靠性的关键痛点。 该论文提...
用于光伏能源预测的轻量级深度学习:优化冬季住宅的脱碳
Lightweight deep learning for photovoltaic energy prediction: Optimizing decarbonization in winter houses
Youssef Jouane · Ilyass Abouelaziz · Imad Saddik · Oussama Oussous · Solar Energy · 2025年1月 · Vol.297
本文提出了一种创新的混合多变量深度学习方法,用于预测冬季住宅中的光伏发电量,重点在于具有低环境影响的轻量级模型。研究开发了一种评估这些模型碳足迹的方法论,综合考虑了训练过程中的能耗、运行阶段的二氧化碳排放以及通过光伏发电优化所实现的节能效益。该方法能够筛选出在预测精度与环境责任之间达到最佳平衡的模型。本研究以瑞士波斯基亚沃的一栋正能冬季住宅(PEWH)为案例,比较了长短期记忆网络(LSTM)、卷积神经网络(CNN)以及一种混合型CNN-LSTM模型在高积雪地区进行短期光伏发电预测的性能表现。结果...
解读: 该轻量级深度学习预测技术对阳光电源iSolarCloud平台和ST储能系统具有重要应用价值。研究中的CNN-LSTM混合模型可集成至智能运维平台,优化冬季高纬度地区光伏-储能协同控制策略。通过精准预测光伏出力,ST系列PCS可提前调整充放电曲线,避免过度发电造成的弃光。特别是在瑞士等高雪地区案例中,...
基于长时域FCS-MPC训练的一维卷积神经网络用于FPGA平台电力电子变换器控制——以Si/SiC混合变换器为例
Long-Horizon FCS-MPC Trained 1-D Convolution Neural Networks for FPGA-Based Power-Electronic Converter Control With a Si/SiC Hybrid Converter Case Study
Ning Li · Hao Yu · Stephen Finney · Paul D. Judge · IEEE Transactions on Industrial Electronics · 2025年2月
传统的电力电子长时域有限控制集模型预测控制(FCS - MPC)在实时实现方面存在两个主要问题:1)计算负担和延迟;2)对现场可编程门阵列(FPGA)等实时平台的硬件资源要求较高。为解决这些问题,研究人员提出利用模型预测控制结果作为离线训练数据来训练人工神经网络(ANN),并将其应用于实时控制器中,以替代原有的模型预测控制模型。通过这种方式,人工神经网络减轻了在线计算负担和对硬件资源的需求。本文提出了一种基于FPGA的用于长时域FCS - MPC的一维卷积神经网络(CNN)。为进一步简化网络模型...
解读: 从阳光电源的业务视角来看,这项基于FPGA的一维卷积神经网络(CNN)控制技术对我们的核心产品线具有重要战略价值。该技术通过机器学习方法解决了长时域有限控制集模型预测控制(FCS-MPC)在功率电子变换器中的实时实现难题,这与我们在光伏逆变器、储能变流器等产品中面临的控制性能优化需求高度契合。 技...
使用卷积神经网络检测光伏组件玻璃裂纹
Using Convolutional Neural Networks to Detect In-Field PV Module Glass Cracks
Savannah Bennett · Thomas Weber · Rory Bennett · Ernst Wittman 等6人 · IEEE Journal of Photovoltaics · 2025年9月
双玻光伏组件的应用日益广泛,人们对这些组件中的玻璃破裂问题也愈发关注。为证实这一现象、量化玻璃破裂率,并减轻在现场查找破裂组件的繁琐工作,本文考虑使用卷积神经网络进行玻璃裂纹检测。对七种模型进行了测试:六层模型、四层模型、VGG16、VGG19、ResNet18、ResNet34 和 ResNet50。在两个光伏(PV)场中采用非标准化图像采集方法,针对两种组件类型创建了七个标注数据集,图像数量从 3540 张到 12600 张不等。六层模型在裂纹与无裂纹分类方面的准确率可达 97.7%,使用 ...
解读: 该CNN玻璃裂纹检测技术对阳光电源SG系列光伏逆变器配套的智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台的智能诊断模块,通过无人机巡检图像自动识别双面玻璃组件裂纹,实现预测性维护。该技术与阳光现有的IV曲线诊断、红外热成像分析形成互补,可提前发现因玻璃裂纹导致的组件功率衰减和...