← 返回
用于光伏能源预测的轻量级深度学习:优化冬季住宅的脱碳
Lightweight deep learning for photovoltaic energy prediction: Optimizing decarbonization in winter houses
| 作者 | Youssef Jouane · Ilyass Abouelaziz · Imad Saddik · Oussama Oussous |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 297 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | **Hybrid CNN–LSTM**: enhanced PV prediction accuracy in harsh winter conditions. |
语言:
中文摘要
本文提出了一种创新的混合多变量深度学习方法,用于预测冬季住宅中的光伏发电量,重点在于具有低环境影响的轻量级模型。研究开发了一种评估这些模型碳足迹的方法论,综合考虑了训练过程中的能耗、运行阶段的二氧化碳排放以及通过光伏发电优化所实现的节能效益。该方法能够筛选出在预测精度与环境责任之间达到最佳平衡的模型。本研究以瑞士波斯基亚沃的一栋正能冬季住宅(PEWH)为案例,比较了长短期记忆网络(LSTM)、卷积神经网络(CNN)以及一种混合型CNN-LSTM模型在高积雪地区进行短期光伏发电预测的性能表现。结果表明,光伏集成可使一次能源消耗最多减少63%,脱碳率达到11%。然而,由于冬季日照有限且能耗相对较低,建筑立面全面覆盖光伏组件会导致发电过剩。通过对LSTM模型的优化,识别出若干配置方案(如南向立面或北向屋顶),其脱碳率分别可达131%和116%,能够满足95%至114%的能源需求,同时有效抑制发电过剩。该PEWH案例研究表明,轻量级深度学习在优化建筑能源预测及推动脱碳方面具有巨大潜力,尤其是在寒冷地区;同时也强调了随着光伏数据日益丰富,模型自身的碳影响在实现更高效、更具生态责任感的预测中所具有的重要性。
English Abstract
Abstract This paper proposes an innovative hybrid multivariate deep learning approach to predict photovoltaic (PV) energy production in winter houses, with a focus on lightweight models with low environmental impact . A methodology is developed to assess the carbon footprint of these models, considering training energy consumption, operational CO 2 emissions, and energy savings from PV production optimization. This approach allows selecting models that offer the best trade-off between predictive accuracy and environmental responsibility. The study compares the performance of long short-term memory (LSTM), convolutional neural networks (CNN), and a hybrid CNN–LSTM model for short-term PV production prediction in high-snow regions, using a Positive Energy Winter House (PEWH) case study in Poschiavo, Switzerland. The results show that PV integration can reduce primary energy consumption by up to 63%, with a decarbonization rate of 11%. However, full façade coverage leads to overproduction due to limited winter sunshine and relatively low energy consumption. LSTM optimization identifies configurations (south facade or north roof) achieving decarbonization rates of 131% and 116% respectively, covering 95% to 114% of energy needs, and limiting overproduction. The PEWH case study demonstrates the potential of lightweight deep learning for optimized energy prediction and decarbonization of buildings, especially in cold regions, and highlights the importance of the carbon impact of models in the face of the increasing availability of PV data for more efficient and eco-responsible predictions.
S
SunView 深度解读
该轻量级深度学习预测技术对阳光电源iSolarCloud平台和ST储能系统具有重要应用价值。研究中的CNN-LSTM混合模型可集成至智能运维平台,优化冬季高纬度地区光伏-储能协同控制策略。通过精准预测光伏出力,ST系列PCS可提前调整充放电曲线,避免过度发电造成的弃光。特别是在瑞士等高雪地区案例中,南立面和北屋顶配置方案实现131%脱碳率的经验,可指导SG逆变器的MPPT算法优化和PowerTitan储能系统的容量配置,提升冬季建筑能源自给率至114%,同时模型碳足迹评估方法为阳光电源绿色AI算法开发提供了新思路。