← 返回
基于深度学习的光伏系统健康监测
Deep Learning-Based Health Monitoring for Photovoltaic Systems
| 作者 | Khaled Alnuaimi · Ameena Saad Al-Sumaiti · Mohamad Alansari · Huai Wang · Khalifa Hassan Al Hosani |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年5月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏系统 故障诊断 无人机技术 深度学习 健康监测框架 |
语言:
中文摘要
向光伏(PV)系统等可再生能源转型对于社会进步至关重要,有助于抵消化石燃料的负面影响。然而,管理光伏系统面临着重大挑战和经济影响。光伏故障一旦发生,需要迅速检测和解决,这会加重经济负担。有效的故障诊断在很大程度上依赖于光伏电站监测和能源管理系统的数据。过去,光伏监测主要依靠人工检查,但无人机(UAV)技术提供了一种更高效、更全面的解决方案,它提高了安全性,能提供详细的图像、具备可扩展性、可进行环境监测以及开展先进的数据分析。本研究利用深度学习(DL)方法对光伏系统的健康状况进行监测,重点分析无人机拍摄的场景。具体而言,本文提出了一个基于深度学习的端到端两阶段健康监测框架,该框架包括用于分割太阳能电池板的语义分割模型SegFormer,以及用于识别光伏组件内异常情况的目标检测模型YOLOv8。在三个公开可用的无人机拍摄数据集上对所提出的框架进行了验证,并与最先进(SOTA)的模型进行了比较。结果表明,与近期的最先进模型相比,太阳能电池板分割的准确率分别提高了25.8%和1.5%,太阳能电池板异常检测的准确率提高了26.6%。
English Abstract
The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.
S
SunView 深度解读
该深度学习健康监测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。LSTM时序建模方法可直接集成至SG系列光伏逆变器的智能诊断模块,通过分析MPPT工作曲线、直流侧电压电流等运行数据,实现组件热斑、遮挡、PID效应等故障的早期预警。对于PowerTitan大型储能系统,该技术可监测ST储能变流器的功率波动特征,预判电池簇性能退化趋势,优化SOC均衡策略。建议将LSTM模型与阳光电源现有的IV曲线诊断技术融合,构建边缘-云协同的预测性维护体系,降低电站LCOE,提升系统25年全生命周期的发电量保障能力。