找到 1 条结果
基于深度学习的光伏系统健康监测
Deep Learning-Based Health Monitoring for Photovoltaic Systems
Khaled Alnuaimi · Ameena Saad Al-Sumaiti · Mohamad Alansari · Huai Wang 等5人 · IEEE Journal of Photovoltaics · 2025年5月
向光伏(PV)系统等可再生能源转型对于社会进步至关重要,有助于抵消化石燃料的负面影响。然而,管理光伏系统面临着重大挑战和经济影响。光伏故障一旦发生,需要迅速检测和解决,这会加重经济负担。有效的故障诊断在很大程度上依赖于光伏电站监测和能源管理系统的数据。过去,光伏监测主要依靠人工检查,但无人机(UAV)技术提供了一种更高效、更全面的解决方案,它提高了安全性,能提供详细的图像、具备可扩展性、可进行环境监测以及开展先进的数据分析。本研究利用深度学习(DL)方法对光伏系统的健康状况进行监测,重点分析无人...
解读: 该深度学习健康监测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。LSTM时序建模方法可直接集成至SG系列光伏逆变器的智能诊断模块,通过分析MPPT工作曲线、直流侧电压电流等运行数据,实现组件热斑、遮挡、PID效应等故障的早期预警。对于PowerTitan大型储能系统,该技术可监测...