← 返回
一种基于加权特征融合的新型集成CNN框架用于光伏组件热成像故障诊断
A Novel Ensemble CNN Framework With Weighted Feature Fusion for Fault Diagnosis of Photovoltaic Modules Using Thermography Images
| 作者 | Nadia Drir · Adel Mellit · Maamar Bettayeb |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2024年11月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏能源 缺陷分类 集成卷积神经网络 加权特征融合 准确率提升 |
语言:
中文摘要
全球范围内光伏(PV)能源的应用不断增加,这凸显了在环境多变和故障情况下维持系统效率的紧迫性。识别、分类和修复缺陷的过程对于确保光伏装置的长期可持续性和性能完整性至关重要。本文介绍了一种创新的集成卷积神经网络(CNN)模型,该模型采用加权特征融合的方法,其准确性超越了单一CNN架构所能达到的水平。通过利用三个性能出色的CNN——VGG16、ResNet和MobileNet,融合从这些网络最后一层提取的深度特征,提升了性能,同时还充分利用了来自多个不同配置CNN的数据集成优势。该方法应用于一个包含12种不同缺陷的公开红外热成像数据集。随后,在这个数据集上对所提出的模型进行了训练、验证和测试。结果表明,与单个CNN模型相比,缺陷分类的准确性有了显著提高,平均准确率达到96%。这种方法凸显了其在缺陷识别方面的实用性,尤其证明了集成CNN能够高精度地对缺陷进行分类。
English Abstract
The global increase in the adoption of photovoltaic (PV) energy accentuates the imperative of maintaining system efficiency amidst environmental variabilities and faults. The processes of identifying, classifying, and rectifying defects are critical for ensuring the long-term sustainability and performance integrity of PV installations. This article introduces an innovative ensemble convolutional neural network (CNN) model that employs weighted feature fusion to enhance accuracy beyond what is achievable with a singular CNN architecture. By utilizing three proficient CNNs—VGG16, ResNet, and MobileNet—the fusion of deep features extracted from the last layers of these networks’ augments performance, while also capitalizing on the integration of data from multiple CNNs with distinct configurations. This methodology was applied to a publicly available infrared thermography imaging dataset, which includes 12 distinct defects. The proposed models have been subsequently trained, validated, and tested on this dataset. The outcomes indicate a substantial enhancement in the accuracy of defect classification compared to individual CNN models, with an average accuracy of 96%. This approach underscores its utility in defect identification, particularly demonstrating the capacity of the ensemble CNN to classify defects with high precision
S
SunView 深度解读
该集成CNN热成像故障诊断技术对阳光电源智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台,为SG系列光伏逆变器配套的组件级监控提供AI诊断能力,通过无人机或固定热成像设备实现大规模电站的自动化巡检。加权特征融合策略可提升复杂工况下的故障识别准确率,特别适用于1500V高压系统中热斑、隐裂等早期故障预警。该技术与现有MPPT算法优化形成协同,通过组件级健康状态评估优化功率追踪策略,降低系统失配损失。建议将该框架嵌入PowerTitan大型储能系统的光储协同管理中,实现光伏侧故障的预测性维护,提升整体系统可靠性与发电效率。