找到 1 条结果
一种基于加权特征融合的新型集成CNN框架用于光伏组件热成像故障诊断
A Novel Ensemble CNN Framework With Weighted Feature Fusion for Fault Diagnosis of Photovoltaic Modules Using Thermography Images
Nadia Drir · Adel Mellit · Maamar Bettayeb · IEEE Journal of Photovoltaics · 2024年11月
全球范围内光伏(PV)能源的应用不断增加,这凸显了在环境多变和故障情况下维持系统效率的紧迫性。识别、分类和修复缺陷的过程对于确保光伏装置的长期可持续性和性能完整性至关重要。本文介绍了一种创新的集成卷积神经网络(CNN)模型,该模型采用加权特征融合的方法,其准确性超越了单一CNN架构所能达到的水平。通过利用三个性能出色的CNN——VGG16、ResNet和MobileNet,融合从这些网络最后一层提取的深度特征,提升了性能,同时还充分利用了来自多个不同配置CNN的数据集成优势。该方法应用于一个包含...
解读: 该集成CNN热成像故障诊断技术对阳光电源智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台,为SG系列光伏逆变器配套的组件级监控提供AI诊断能力,通过无人机或固定热成像设备实现大规模电站的自动化巡检。加权特征融合策略可提升复杂工况下的故障识别准确率,特别适用于1500V高压系统中...