← 返回
基于跨域自适应生成对抗网络的多退化水平光伏阵列故障诊断
Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network
| 作者 | Peijie Lin · Feng Guo · Yaohai Lin · Shuying Cheng · Xiaoyang Lu · Zhicong Chen · Lijun Wu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 386 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A CDAGAN is proposed to Cross-domain adaptive FD of PV arrays at different degradation levels. |
语言:
中文摘要
摘要 近年来,由于光伏电站运行与维护的重要性,光伏(PV)阵列故障诊断(FD)取得了令人瞩目的进展。然而,由于运行工况复杂,光伏阵列不可避免地会发生渐进式退化,导致输出数据出现域偏移,这对故障诊断性能产生显著的负面影响。为解决上述问题,本研究提出了一种两阶段跨域自适应生成对抗网络深度学习方法,用于不同退化水平下的光伏阵列故障诊断。在第一阶段,利用源域(即无性能退化的光伏阵列)中的正常数据进行训练;随后,在对抗训练过程中将最大均值差异(MMD)损失引入故障生成器,以生成源域故障数据的高层特征表示。在第二阶段,采用相同的训练步骤对故障生成器进行引导,具体而言,利用目标域(即存在性能退化的光伏阵列)中的正常数据,生成与目标域特征一致的故障数据特征。然后,可利用所生成的故障数据特征训练跨域自适应故障诊断模型。所提出的模型不仅能够学习不同类型数据之间的关联关系,还能利用目标域健康状态下的光伏阵列数据人工生成虚假样本,实现跨域自适应故障诊断。实验结果表明,该模型在两项任务中的精确率分别为98.34%和92.93%,召回率分别为98.23%和94.13%,F1分数分别为0.9823和0.9274,各项指标均优于对比模型。
English Abstract
Abstract Recently, promising progresses have been made in photovoltaic (PV) arrays fault diagnosis (FD) due to the importance of operation and maintenance of PV power plants. However, PV arrays inevitably experience gradual degradation due to the complexity of operating conditions, resulting in domain shift of output data, which has a significant negative impact on the performance of FD. To address these problems, this study proposes a two-stage cross-domain, i.e., adaptive generative adversarial network deep learning approach for PV arrays FD under different degradation levels. In the first stage, the Normal data from the source domain (PV arrays without performance degradation) is utilized for training. Then, the Maximum Mean Discrepancy (MMD) loss is introduced to the fault generators in adversarial training to produce high-level feature representations of source domain fault data. In the second stage, identical training steps are used to guide the fault generators. Specifically, Normal data from the target domain i.e., PV arrays with performance degradation , is utilized to generate fault data features that are consistent with the target domain features. Then, the cross-domain adaptive FD model can be trained by using generated fault data features. The proposed model can not only learn the relationship from the different types of data, but also utilize target domain PV array data under healthy conditions to manually generate fake samples for cross-domain adaptive FD. Experimental results show that the Precision of the proposed model in the two tasks is 98.34 % and 92.93 %, with Recall is 98.23 % and 94.13 %, F1-Score is 0.9823 and 0.9274, all of which are better than those of the comparison models.
S
SunView 深度解读
该跨域自适应GAN故障诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud智慧运维平台具有重要应用价值。针对光伏阵列性能衰减导致的数据域偏移问题,该方法通过MMD损失函数实现跨域特征对齐,仅需健康状态数据即可生成故障样本进行诊断,准确率达98.34%。可集成至iSolarCloud平台的预测性维护模块,增强SG逆变器MPPT优化算法的鲁棒性,解决大规模光伏电站全生命周期中因组件衰减引起的故障识别精度下降问题,提升运维效率并降低误报率,特别适用于PowerTitan等长周期运行的储能系统健康管理。