← 返回
光伏发电技术 储能系统 故障诊断 ★ 5.0

光伏电站故障检测与分类中符号表达式的综合研究

A comprehensive study on symbolic expressions for fault detection-classification in photovoltaic farms

作者 Nikola Anđelić · Sandi Baressi Šegot · Vedran Mrzljak
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 光伏发电技术
技术标签 储能系统 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Introduces a GPSC for fault detection and classification in large-scale PV farms.
语言:

中文摘要

大型光伏(太阳能)电站通过光伏(PV)技术在利用太阳能发电方面发挥着关键作用。然而,这类系统的控制与管理面临重大挑战,尤其是在故障检测方面。本文提出将遗传编程符号分类器(GPSC)应用于一个公开的光伏电站故障检测数据集。鉴于原始数据集存在类别不平衡问题,本研究需采用过采样技术以实现各类样本的均衡表示。此外,本文还深入研究了缩放与归一化技术对GPSC性能的影响。GPSC被系统地应用于每一种经过缩放或归一化处理后的平衡数据集变体,并采用随机超参数值搜索(RHVS)方法对其超参数进行精细调优。该算法通过五折交叉验证(5FCV)方式进行训练,并依据准确率、受试者工作特征曲线下面积、精确率、召回率和F1分数确定最优的符号表达式(SEs)。研究生成了多个符号表达式,并据此构建了一种基于阈值的投票集成模型(TBVE)。针对每个类别的TBVE在原始数据集上进行了测试,并对阈值进行了精细调整,以进一步提升光伏故障检测与分类的性能。结果表明,该方法为每一类均产生了高精度的TBVE(大多数情况下的准确率达到1.0),充分展示了GPSC与TBVE在光伏电站故障检测与分类中的有效性。

English Abstract

Abstract Large-scale photovoltaic (solar) farms play a crucial role in harnessing solar energy for electricity generation through photovoltaic (PV) technology. However, the control and management of such systems pose significant challenges, particularly in fault detection. This paper introduces the application of a genetic programming symbolic classifier (GPSC) to a publicly available dataset for fault detection in photovoltaic farms. Given the imbalanced nature of the original dataset, the study necessitated the application of oversampling techniques to achieve a balanced representation of class samples. Additionally, the impact of scaling and normalizing techniques on the performance of the GPSC was thoroughly investigated. The GPSC was systematically applied to each scaled or normalized balanced dataset variation, and its hyperparameters were fine-tuned using a random hyperparameter values search (RHVS) method. The algorithm underwent training, via a 5-fold cross-validation (5FCV) process, and the best symbolic expressions (SEs) were determined based on accuracy, area under the receiver operating characteristics curve, precision, recall, and F1-score. The research yielded many SEs, which were used to develop a threshold-based voting ensemble (TBVE). The TBVE for each class was tested on the initial dataset and the threshold was finely tuned to achieve even higher classification performance in photovoltaic detection/classification. Results demonstrated that this approach produced highly accurate TBVE for each class (accuracy in the majority of cases equal to 1.0), showcasing the effectiveness of the GPSC and TBVE in fault detection/classification for photovoltaic farms.
S

SunView 深度解读

该遗传编程符号分类器(GPSC)故障检测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。研究中的阈值投票集成(TBVE)方法实现了接近1.0的故障分类准确率,可直接应用于SG系列光伏逆变器和PowerTitan储能系统的预测性维护模块。符号表达式算法的轻量化特性适合边缘计算部署,能增强ST系列PCS的本地故障诊断能力,减少对云端依赖。该技术与阳光电源现有MPPT优化和三电平拓扑控制形成互补,可显著提升大型光伏电站的智能化运维水平和系统可靠性。