← 返回
光伏发电技术 储能系统 故障诊断 ★ 5.0

光伏组件故障诊断技术综述

Fault diagnosis of photovoltaic modules: A review

作者 Yuqi Liu · Yiquan Wu
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 293 卷
技术分类 光伏发电技术
技术标签 储能系统 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏组件 故障诊断技术 光伏电站 智能故障检测方法 故障检测
语言:

中文摘要

摘要 光伏(PV)组件的故障诊断技术对于保障光伏电站的稳定运行具有重要意义。智能故障检测方法的应用能够有效提高故障检测的准确性和效率。本文综述了近年来光伏组件故障诊断领域的最新研究进展,重点聚焦于基于电气特性参数和图像处理技术的故障检测方法。首先,介绍了光伏组件常见故障的类型、成因及传统诊断方法;接着,讨论了基于电气特性参数的故障检测技术,包括基于I-V特性曲线分析和数学模型的方法;随后,回顾了基于图像处理的故障检测技术,特别是无人机(UAV)辅助图像检测技术在光伏组件故障定位与识别中的应用,并重点探讨了机器视觉技术在故障检测中的发展现状与面临的挑战;最后,总结了当前可用的数据集和性能评价指标,并对未来光伏组件智能故障诊断技术的发展趋势进行了展望。本文旨在为相关领域的研究人员提供参考,推动光伏组件故障诊断技术的创新与发展。

English Abstract

Abstract The fault diagnosis technology of photovoltaic (PV) components is very important to ensure the stable operation of PV power station. The application of intelligent fault detection method can effectively improve the accuracy and efficiency of fault detection. In this paper, the latest progress in the field of PV module fault diagnosis in recent years is reviewed, with emphasis on fault detection methods based on electrical characteristic parameters and image processing technology. Firstly, this paper introduces the types, causes and traditional diagnosis methods of the common faults of PV modules. Then, the fault detection technology based on electrical characteristic parameters was discussed, including the method based on I-V characteristic curve analysis and mathematical model. Then, the paper reviews the fault detection technology based on image processing , especially the application of unmanned aerial vehicle (UAV)-assisted image detection technology in fault location and identification of PV modules, and focuses on the development and challenges of machine vision technology in fault detection. Finally, the existing data sets and performance evaluation indicators are summarized, and the development trend of intelligent fault diagnosis technology for PV modules in the future is prospected. This paper aims to provide reference for researchers in related fields and promote the innovation and development of PV module fault diagnosis technology.
S

SunView 深度解读

该光伏组件故障诊断综述对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。基于I-V特性曲线分析的电气参数诊断方法可集成到逆变器MPPT优化算法中,实现实时故障预警;无人机辅助的图像检测技术与机器视觉结合,可增强iSolarCloud智能运维平台的预测性维护能力,提升电站巡检效率。智能故障诊断技术的发展为阳光电源构建从组件级到系统级的全链条健康管理体系提供技术路径,助力降低电站运维成本,提高发电效率和系统可靠性。