← 返回
光伏发电技术 故障诊断 ★ 5.0

基于成本效益数据的分布式光伏系统故障检测与诊断方法学综述

A methodological review of cost-effective data-driven fault detection and diagnosis in distributed photovoltaic systems

作者 Yinyan Liua · Earl Duran · Anna Bruce · Baran Yildiz · Bernardo Mendonca Severiano · Ibrahim Anwar Ibrahim · Jonathan Rispler · Chris Martelld · Fiacre Rougieux
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 光伏发电技术
技术标签 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Methodological framework for reviewing algorithms by data availability and tasks.
语言:

中文摘要

摘要 光伏(PV)技术的快速发展以及光伏系统的广泛应用,凸显了对更高效、更具成本效益的监测策略日益增长的需求,以确保系统可靠运行和最优的能源性能。本文综述提出了一种方法论框架,并结合基于案例的实测数据,用于分布式光伏系统的性能监测。该框架聚焦于具有成本效益的数据,例如时间序列电气参数,这些数据对于实现精确的故障检测与诊断至关重要,同时识别出限制当前性能监测算法有效性的各种约束条件。本文首先采用两种分类方式对光伏系统中的系统性故障进行归类:直流侧与交流侧故障,以及软故障与硬故障。随后讨论了数据的可获得性与处理方法,强调了公开可获取的、低成本数据集以及合适的数据处理方法的重要性。文中详细考察了基于低成本数据的传统统计算法,并着重分析其实际应用可行性。此外,对基于机器学习和边缘计算的算法进行了批判性综述,并根据数据可获得性和任务需求对其进行分类,同时对其性能进行了高层次评估。本方法论综述旨在帮助工业界实践者和研究人员根据数据可获得性及具体应用目标选择合适的算法。最后,本文批判性地审视了当前基于低成本数据的故障检测与诊断方法的局限性,特别是其对小规模或实验室环境下的数据集的依赖性。在此全面的高层次综述基础上,识别出若干关键挑战、新兴趋势以及工业实践与学术研究之间的潜在差距。与此同时,某些挑战(如故障库的构建)已开始通过使用真实世界数据集得到初步解决。

English Abstract

Abstract The rapid evolution of Photovoltaic (PV) technologies and the widespread adoption of PV systems highlight the growing need for more efficient and cost-effective monitoring strategies to ensure reliable operation and optimal energy performance. This review presents a methodological approach, incorporating case-based measurements, for performance monitoring of distributed PV systems. It focuses on cost-effective data, such as time-series electrical parameters, which are crucial for accurate fault detection and diagnosis while identifying the constraints that limit the effectiveness of current performance monitoring algorithms. The review first categorises systematic faults in PV systems using two approaches: DC-side vs. AC-side faults, and soft vs. hard faults. It then discusses data availability and processing, highlighting the importance of publicly accessible, cost-effective datasets and suitable data processing methods. Traditional statistical algorithms based on cost-effective data are examined in detail, with an emphasis on their practical applicability. In addition, machine learning-based and edge computing algorithms are critically reviewed and classified according to data availability and task requirements, with a high-level evaluation of their performance. This methodological review aims to support both industry practitioners and researchers in selecting suitable algorithms based on data availability and specific application purposes. Finally, the limitations of current fault detection and diagnosis methods based on cost-effective data are critically examined, particularly their reliance on small-scale or laboratory-based datasets. Building on this comprehensive high-level review, key challenges, emerging trends, and potential gaps between industrial practice and academic research are identified. At the same time, certain challenges, such as the development of fault libraries, have begun to be addressed through the use of real-world datasets.
S

SunView 深度解读

该综述对阳光电源SG系列逆变器和iSolarCloud平台具有重要指导意义。文章强调基于时序电气参数的成本有效型故障诊断方法,与我司逆变器内置监测系统和云平台架构高度契合。DC/AC侧故障分类框架可优化MPPT算法的异常检测能力,机器学习与边缘计算结合方案可增强逆变器本地诊断功能,减少云端通信依赖。文中指出的实际工况数据集缺失问题,正是iSolarCloud海量运行数据的应用场景,可建立分布式光伏故障库,提升预测性运维精度,降低电站LCOE。