← 返回
光伏发电技术 故障诊断 ★ 5.0

基于CONMI特征选择和支持向量机的光伏系统并发故障精确诊断

Accurate diagnosis of concurrent faults in photovoltaic systems using CONMI-based feature selection and Support vector machines

作者 Mohammad Shahmeer Hassa · Vun Jack Chin · Lenin Gopal
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 光伏发电技术
技术标签 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Identification of critical electrical features for efficient concurrent PV fault diagnosis using CONMI.
语言:

中文摘要

摘要 光伏(PV)系统在户外环境中容易发生故障。多个故障可能同时存在于光伏系统中,这种现象被称为并发故障。准确识别并发故障至关重要,因为它们会带来安全风险并导致经济损失。通常情况下,这些故障表现出高度相似的电气特征,无法通过传统方法加以区分。尽管光伏系统单故障诊断已得到广泛研究,但针对并发故障的研究仍较为缺乏。本研究考虑并分析了多种并发故障数据集,并采用基于过滤式特征选择算法CONMI所选取的关键特征进行处理。为便于分析,本研究聚焦于双故障组合情形。研究结果表明,支持向量机(SVM)因其在区分高维数据集方面的简洁性和有效性,适用于故障识别与诊断任务。此外,本文对比并讨论了多种SVM核函数(包括线性核、多项式核、径向基函数核和Sigmoid核)的适用性。为验证CONMI的有效性,将使用CONMI所选特征的SVM模型分类结果与主成分分析(PCA)和归一化互信息(Normalized Mutual Information)方法进行了比较。同时,通过对比使用与不使用CONMI所选特征的模型计算时间,评估了SVM模型计算效率的提升程度。为进一步验证SVM模型的性能,将其结果与随机森林、逻辑回归和k-近邻等其他广泛应用的机器学习方法进行基准对比。结果表明,CONMI可使计算时间最多减少至原来的1/18,而基于多项式核的SVM模型表现优于其他竞争模型,整体分类准确率达到94.52%。此外研究发现,无论环境条件如何,涉及线间短路故障与部分遮蔽情况的并发故障由于其电流-电压(I-V)特性变化几乎难以区分,因而特别难以诊断。

English Abstract

Abstract Photovoltaic (PV) systems are susceptible to faults in outdoor environment. Multiple faults can exist in PV systems simultaneously, the phenomenon known as concurrent faults. An accurate identification of concurrent faults is critical as they pose safety risks and lead to financial losses. More often than not, these faults exhibit highly identical electrical features which cannot be differentiated using conventional methods. While single fault diagnosis in PV systems has been extensively studied, the research on concurrent faults is lacking. In this study, a wide range of concurrent faults datasets are considered and analysed using key features selected via filter feature selection algorithm, CONMI. To analyze manageable number of concurrent faults, this study focuses on dual-fault combinations. From the findings, Support Vector Machine (SVM)—chosen for its simplicity and effectiveness in distinguishing high-dimensional dataset—is applied for the fault identification and diagnosis task. Additionally, the suitability of several SVM kernels, namely, linear, polynomial, radial basis function, and sigmoid, are compared and discussed. To validate CONMI, classification results of SVM models using CONMI-selected features are compared to Principal Component Analysis and Normalized Mutual Information. Additionally, an increase in computational efficiency of SVM models is determined through comparison of model computation times with and without CONMI-selected features. For further validation of SVM models, their results are benchmarked against other widely used machine learning methods i.e., Random Forest, Logistic Regression, and k -Nearest Neighbors. The results show that CONMI reduces computation time by up to 18 times while polynomial kernel-based SVM model outperformed its competitors, achieving an overall classification accuracy of 94.52%. Further, it was found that concurrent faults involving line-to-line faults and partial shading conditions are particularly challenging to diagnose, irrespective of the environmental conditions, due to their almost indistinguishable variations in the I-V characteristics.
S

SunView 深度解读

该并发故障诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud智能运维平台具有重要应用价值。研究采用CONMI特征选择与SVM算法,可将计算效率提升18倍,诊断准确率达94.52%,特别适合集成到iSolarCloud预测性维护系统中。针对线间故障与局部阴影等难区分并发故障的识别方法,可优化MPPT算法响应策略,提升组串级故障定位能力。该技术框架可嵌入逆变器边缘计算单元,实现实时多故障诊断,降低电站安全风险与经济损失,增强阳光电源智能运维竞争力。