← 返回
电动汽车驱动 SiC器件 ★ 5.0

单片双向开关的物理结构、特性及应用:全面综述

Physical Structure, Characteristics, and Applications of Monolithic Bidirectional Switches: A Comprehensive Review

作者 Guangyu Wang · Huiqing Wen · Wen Liu · Fan Li
期刊 IEEE Transactions on Power Electronics
出版日期 2025年2月
技术分类 电动汽车驱动
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 双向开关 宽带隙半导体材料 单片双向开关 导通损耗 功率密度
语言:

中文摘要

双向开关(BiSs)具有优异的特性,在导通期间允许双向电流流动,关断时能够承受双向电压。然而,传统的双向开关通常由单向分立器件组合实现,例如两个有源器件和两个二极管的串联与反并联连接。由于导通状态下的电压偏移,这些传统双向开关的器件尺寸相对较大,且存在较大的导通损耗。随着碳化硅(SiC)和氮化镓(GaN)等宽禁带(WBG)半导体材料的普及,迫切需要设计出导通压降更低、导通损耗更小、器件尺寸更小,从而功率密度更高的双向开关。因此,通过将多个功率晶体管集成到单个芯片中,基于宽禁带半导体材料的单片式双向开关(MBSs)能够很好地实现这一目标,在降低寄生电感和导通电阻的同时,具备高频和快速开关的特性。本文首次从材料、物理结构、特性和应用等方面对单片式双向开关进行了全面综述,有助于单片式双向开关的深入优化以及未来的大规模推广。

English Abstract

Bidirectional switches (BiSs) own excellent characteristics, allowing bidirectional current flow during conduction period and withstanding bidirectional voltage when turned off. However, traditional BiSs are typically implemented by the association of unidirectional discrete devices, such as the series and antiparallel connection of two active devices and two diodes, which exhibit relatively large device size and conduction losses due to the on-state voltage offset. With the popularity of wide band-gap (WBG) semiconductor materials such as SiC and GaN, there is an urgent need to design BiSs with lower on-state voltage drop, smaller conduction losses, smaller device size, and consequently higher power density. Therefore, by integrating several power transistors into a single chip, monolithic bidirectional switches (MBSs) based on WBG semiconductor materials can achieve this goal very well, exhibiting high-frequency and fast switching while reducing parasitic inductance and conduction resistance. This article provides a comprehensive review of MBSs from the perspectives of materials, physical structures, characteristics, and applications for the first time, which is helpful for the in-depth optimization and future large-scale promotion of MBSs.
S

SunView 深度解读

单片式双向开关(MBS)技术对阳光电源在光伏逆变器、储能系统等核心产品领域具有重要战略价值。该技术基于SiC和GaN等宽禁带半导体材料,通过将多个功率晶体管集成于单一芯片,能够显著降低导通压降和传导损耗,这直接契合我司提升系统效率和功率密度的技术路线。

从业务应用角度看,MBS技术在我司三大核心领域均具备落地潜力。在光伏逆变器方面,双向开关可优化矩阵变换器和多电平拓扑设计,减少器件数量和寄生参数,提升系统在高频开关下的转换效率,这对于我司推进大功率集中式和户用逆变器的小型化、轻量化目标至关重要。在储能系统中,双向DC-DC变换器和PCS系统需要频繁进行能量双向流动,MBS的低导通损耗特性可直接提升充放电效率,延长电池循环寿命。此外,在电动汽车充电桩和V2G应用场景中,该技术能够实现更高效的双向功率控制。

技术成熟度评估方面,WBG器件已进入商业化阶段,但单片集成的MBS仍处于从研发向量产过渡期。主要挑战包括高温下的热管理设计、栅极驱动的同步控制复杂性,以及成本控制。建议我司密切跟踪该技术演进,在新一代产品平台中预留设计接口,同时可考虑与上游半导体厂商建立联合开发机制,在矩阵变换器等前瞻性拓扑中率先试点应用,抢占技术制高点,巩固我司在高效能源转换领域的领先优势。