← 返回
光伏发电技术 SiC器件 深度学习 ★ 4.0

基于逆深度学习光线追踪的定日镜表面预测

Inverse Deep Learning Raytracing for heliostat surface prediction

作者 Jan Lewen · Max Pargmann · Mehdi Cherti · Jenia Jitsev · Robert Pitz Paal · Daniel Maldonado Quinto
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 289 卷
技术分类 光伏发电技术
技术标签 SiC器件 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 Simulative deep learning model to predict heliostat surfaces from target images.
语言:

中文摘要

摘要 聚光太阳能热发电(Concentrating Solar Power, CSP)电站在全球向可持续能源转型过程中发挥着关键作用。确保CSP电站安全高效运行的一个关键因素是接收器上聚光通量密度的分布情况。然而,单个定日镜产生的非理想通量密度可能损害电站的安全性和效率。每个定日镜所产生的通量密度受其精确表面形貌的影响,包括倾斜角度(canting)和镜面误差等因素。对运行中的大量定日镜进行表面形貌的准确测量是一项艰巨的挑战。因此,控制系统通常依赖于理想表面条件的假设,这在一定程度上牺牲了系统的安全性与运行效率。在本研究中,我们提出了一种创新方法——逆深度学习光线追踪(inverse Deep Learning Raytracing, iDLR),该方法仅基于定日镜校准过程中获取的目标图像即可实现对定日镜表面的预测。通过基于仿真的研究发现,在大多数情况下,单个定日镜的通量密度分布包含了足够的信息,使得深度学习模型能够以类同偏折测量法(deflectometry-like)的精度准确预测其底层表面形貌,中位数平均绝对误差约为0.14毫米。当将iDLR预测得到的表面形貌集成到光线追踪环境中用于计算通量密度时,我们的方法实现了92%的预测准确率,比采用理想定日镜假设的方法高出25%。此外,我们评估了该方法的局限性,特别是关于表面预测精度及其所导致的通量密度预测性能的问题。进一步地,我们提出了一种基于非均匀有理B样条(NURBS)的创新且高效的定日镜表面模型。该模型实现了高度紧凑的表示方式,仅需256个参数即可定义整个表面,参数数量减少了99.97%,内存使用量减少了99.91%。这种高效的模型为资源受限条件下的深度学习应用于定日镜表面预测提供了支持,使其成为当前最先进的定日镜表面参数化解决方案之一。我们的研究结果表明,iDLR在优化CSP电站运行方面具有巨大潜力,可显著提升整体效率并增加电厂的能量输出。

English Abstract

Abstract Concentrating Solar Power (CSP) plants play a crucial role in the global transition toward sustainable energy . A key factor in ensuring the safe and efficient operation of CSP plants is the distribution of concentrated flux density on the receiver. However, the non-ideal flux density generated by individual heliostats can undermine the safety and efficiency of the power plant. The flux density from each heliostat is influenced by its precise surface, which includes factors such as canting and mirror errors. Accurately measuring these surfaces for a large number of heliostats in operation is a formidable challenge. Consequently, control systems often rely on the assumption of ideal surface conditions, which compromises both safety and operational efficiency. In this study, we introduce inverse Deep Learning Raytracing ( iDLR ), an innovative method designed to predict heliostat surfaces based solely on target images obtained during heliostat calibration. Our simulation-based investigation reveals that the flux density distribution of a single heliostat contains sufficient information to enable deep learning models to accurately predict the underlying surface with deflectometry-like precision in most cases, achieving a median Mean Absolute Error of approximately 0.14 mm). When integrating the iDLR surface predictions into a ray-tracing environment to compute flux densities, our method achieves an accuracy of 92%, surpassing the performance of the ideal heliostat assumption by 25%. Additionally, we assess the limitations of this method, particularly in relation to surface prediction accuracy and resultant flux density predictions. Furthermore, we present an innovative and efficient heliostat surface model based on NURBS . This approach achieves a highly compact representation , requiring only 256 parameters to define the surface—a reduction of 99.97% in the amount of parameter and a 99.91% in memory usage. This efficient model enables resource-effective deep learning for heliostat surface predictions, positioning it as a promising state-of-the-art solution for heliostat surface parameterization. Our findings demonstrate that iDLR has significant potential to optimize CSP plant operations , enhancing overall efficiency and increasing the energy output of power plants.
S

SunView 深度解读

该逆向深度学习光线追踪技术对阳光电源光热-光伏混合电站系统具有重要借鉴价值。iDLR方法通过目标图像预测定日镜表面缺陷,实现92%精度的光通量预测,可启发iSolarCloud平台开发基于深度学习的光伏组件表面缺陷诊断功能。其NURBS参数化模型将存储需求降低99.91%,与阳光电源SG系列逆变器的边缘计算能力结合,可实现资源受限场景下的实时预测性维护。该技术思路可扩展至大规模光伏阵列的热斑检测、遮挡分析及MPPT优化,提升电站整体发电效率和智能运维水平。