← 返回
光伏发电技术 SiC器件 深度学习 ★ 4.0

从焦斑可扩展预测定日镜表面:逆向深度学习光线追踪的仿真到真实迁移

Scalable heliostat surface predictions from focal spots: Sim-to-Real transfer of inverse Deep Learning Raytracing

作者 Jan Lewen · Max Pargmann · Mehdi Cherti · Jenia Jitsev · Robert Pitz-Paal · Daniel Maldonado Quinto
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
技术标签 SiC器件 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 Deep learning model that predicts heliostat surfaces from target images.
语言:

中文摘要

摘要 聚光太阳能发电(Concentrating Solar Power, CSP)电站是实现可持续能源转型的关键技术之一。其安全高效运行的一个关键因素在于接收器上太阳辐射通量分布的精确性。然而,单个定日镜产生的通量密度对表面缺陷极为敏感,例如镜面倾斜误差和形变。在实际部署中,对数百乃至数千个定日镜的表面进行逐一测量仍然不切实际。因此,控制系统通常假设定日镜表面为理想状态,导致性能次优并可能带来安全隐患。为解决这一问题,近期提出了一种名为逆向深度学习光线追踪(inverse Deep Learning Raytracing, iDLR)的新方法,该方法能够通过常规校准过程中捕获的焦斑图像反推定日镜表面形貌。然而,此前iDLR仅在仿真环境中得到验证。本文首次实现了iDLR从仿真到真实的成功迁移,使得可以直接基于真实世界中的靶标图像准确预测定日镜表面形貌。值得注意的是,这种迁移是以零样本(zero-shot)方式实现的,即模型仅使用仿真的通量密度数据进行训练,并直接应用于真实环境下的定日镜焦斑图像,无需额外的真实图像微调或再训练。我们在63台定日镜上、在真实运行条件下评估了该方法的表现。iDLR的表面预测结果达到中位数平均绝对误差(MAE)仅为0.17 mm,并且在84%的情况下与基于偏折法(deflectometry)的地面真值表现出良好一致性。当用于光线追踪模拟时,在整个数据集上,iDLR所预测的通量密度相对于偏折法测量结果的平均准确率达到90%,相比常用的理想化定日镜表面假设提升了26%。我们还在一种具有挑战性的双重外推场景下测试了该方法,即涉及未见过的太阳位置和接收器投影的情况,结果表明iDLR仍能保持较高的预测精度,凸显其强大的泛化能力。我们的研究结果表明,iDLR是一种可扩展、自动化且成本效益高的解决方案,可用于将真实的定日镜表面模型集成到数字孪生系统中。这为优化定日镜控制策略、改善接收器上的通量密度分布,以及最终提升未来CSP电站的效率与安全性开辟了新的途径。

English Abstract

Abstract Concentrating Solar Power (CSP) plants are a key technology in the transition toward sustainable energy. A critical factor for their safe and efficient operation is the accurate distribution of concentrated solar flux on the receiver. However, flux densities from individual heliostats are highly sensitive to surface imperfections, such as canting and mirror deformations. Measuring these surfaces across hundreds or thousands of heliostats remains impractical in real-world deployments. As a result, control systems often assume idealized heliostat surfaces, leading to suboptimal performance and potential safety risks. To address this, inverse Deep Learning Raytracing (iDLR) has recently been introduced as a novel method for inferring heliostat surfaces from target images of focal spots captured during routine calibration procedures. However, until now, iDLR had only been demonstrated in simulation. In this work, we present the first successful Sim-to-Real transfer of iDLR, enabling accurate surface predictions directly from real-world target images. Remarkably, this was achieved through a zero-shot Sim-to-Real transfer, in which the model is trained exclusively with simulated flux density data and applied directly to real target images of heliostat focal spots without the need for additional training on real target images. We evaluate our method on 63 heliostats under real operational conditions. iDLR surface predictions achieve a median mean absolute error (MAE) of only 0.17 mm and show good agreement with deflectometry ground truth in 84% of cases. When used in raytracing simulations, it enables flux density predictions with a mean accuracy of 90% compared to deflectometry over our dataset, and outperforms the commonly used ideal heliostat surface assumption by 26%. We tested this approach in a challenging double-extrapolation scenario, involving unseen sun positions and receiver projections, and found that iDLR maintains high predictive accuracy, highlighting its generalization capabilities. Our results demonstrate that iDLR is a scalable, automated, and cost-effective solution for integrating realistic heliostat surface models into digital twins. This opens the door to an optimized heliostat control, improved flux density distributions on the receiver, and ultimately, enhanced efficiency and safety in future CSP plants.
S

SunView 深度解读

该逆向深度学习光线追踪技术对阳光电源光热-光伏混合电站具有重要价值。iDLR可实现定日镜表面缺陷的自动化检测与建模,通过零样本迁移学习将仿真模型直接应用于实际场景,预测精度达90%。该方法可集成至iSolarCloud平台,实现大规模定日镜阵列的预测性维护与数字孪生建模。其深度学习架构可借鉴应用于SG系列光伏逆阵列的故障诊断,通过热斑图像反推组件缺陷,提升MPPT优化效率。该技术的Sim-to-Real迁移思路对阳光电源功率器件热管理仿真验证具有方法论启发意义。