找到 27 条结果 · IEEE Transactions on Power Systems
一种结合局部-全局特征提取的混合深度学习框架用于智能电力系统稳定性评估
A Hybrid Deep Learning Framework With Local-Global Feature Extraction for Intelligent Power System Stability Assessment
Wei Yao · Runfeng Zhang · Yurun Zhang · Shanyang Wei 等6人 · IEEE Transactions on Power Systems · 2025年5月
暂态仿真对保障电力系统安全稳定运行至关重要。大扰动后,系统可能出现暂态功角失稳和短期电压失稳,二者电气特性相似但需不同控制策略,因此准确识别主导失稳模式(DIM)尤为关键。本文提出一种新型混合深度学习框架,通过充分提取电力数据中的局部-全局特征实现高精度DIM识别。该框架采用经随机采样与聚合优化的图神经网络以增强局部特征捕捉与模型泛化能力,并引入基于自注意力机制的Transformer网络挖掘关键全局特征。同时嵌入重要离散故障特征以提升性能。所提方法有效融合多层级特征,克服了现有模型局限于单一失...
解读: 该混合深度学习框架对阳光电源储能系统和电网侧产品具有重要应用价值。在PowerTitan大型储能系统中,可实时识别电网暂态功角失稳与短期电压失稳的主导模式,为ST系列储能变流器提供差异化控制策略:功角失稳时优先调节有功功率支撑,电压失稳时侧重无功补偿。该框架的图神经网络与Transformer架构可...
基于卷积图神经网络与参数迁移的区域光伏功率短期概率预测
Short-Term Probabilistic Forecasting for Regional PV Power Based on Convolutional Graph Neural Network and Parameter Transferring
Fan Lin · Yao Zhang · Hanting Zhao · Wei Huo 等5人 · IEEE Transactions on Power Systems · 2024年11月
本文提出一种用于区域光伏功率短期概率预测的新型端到端深度学习模型,该模型具有局部-全局两层结构。在局部层,构建基于有向图的动态空间卷积图神经网络,以学习光伏电站的高维特征表示;在全局层,提出动态图池化方法,将局部特征聚合为全局表示,并映射为区域光伏功率的概率预测结果。为防止过拟合,引入基于参数迁移的训练策略。在公开真实数据上的实验表明,该模型可提供高质量且可靠的短期概率预测。
解读: 该区域光伏功率概率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。其卷积图神经网络可建模区域内多个光伏电站的空间关联性,为SG系列逆变器集群提供更精准的短期功率预测。概率预测结果可优化PowerTitan储能系统的充放电策略制定,通过预测区间合理配置储能容量,提升系统经济性。参...
PowerFlowMultiNet:用于不平衡三相配电系统的多图神经网络
PowerFlowMultiNet: Multigraph Neural Networks for Unbalanced Three-Phase Distribution Systems
Salah Ghamizi · Jun Cao · Aoxiang Ma · Pedro Rodriguez · IEEE Transactions on Power Systems · 2024年9月
高效求解配电网中的三相不平衡潮流对于电网分析和仿真至关重要。迫切需要能够处理大规模不平衡电网的可扩展算法,以提供准确、快速的解决方案。为此,深度学习技术,尤其是图神经网络(GNN)应运而生。然而,现有文献主要集中在平衡网络,在支持三相不平衡电网方面存在重大空白。本文介绍了 PowerFlowMultiNet,这是一种专门为三相不平衡电网设计的新型多图 GNN 框架。该方法在多图表示中分别对每一相进行建模,有效捕捉了不平衡电网的固有不对称性。引入了一种利用消息传递的图嵌入机制,以捕捉电力系统网络内...
解读: 该多图神经网络潮流计算技术对阳光电源配电侧产品具有重要应用价值。在PowerTitan大型储能系统并网场景中,可实时分析三相不平衡工况下的潮流分布,优化ST系列储能变流器的三相功率调度策略,提升不平衡补偿能力。对于分布式光伏集群(SG逆变器阵列),该算法可快速评估不对称故障下的系统状态,为iSola...
基于失稳模式引导的模型更新方法用于数据驱动的暂态稳定性评估
Instability Pattern-Guided Model Updating Method for Data-Driven Transient Stability Assessment
Huaiyuan Wang · Fajun Gao · Qifan Chen · Siqi Bu 等5人 · IEEE Transactions on Power Systems · 2024年7月
深度学习方法广泛应用于电力系统暂态稳定性评估(TSA),但其结果缺乏可解释性且评估过程难以控制,限制了实际应用。本文提出一种失稳模式引导的模型更新方法以优化TSA模型。首先,构建基于Transformer编码器的TSA模型,通过注意力分布解释和分析预测结果;其次,引入注意力引导损失函数,针对特定失稳模式调整评估规则,提升分类精度;同时采用注意力保持损失,维持其他样本的评估能力并抑制过拟合;此外,基于注意力分布构建代表性数据集以降低更新成本。在IEEE 39节点系统与华东电网中的仿真验证了该方法的...
解读: 该失稳模式引导的暂态稳定评估技术对阳光电源PowerTitan大型储能系统和构网型控制产品具有重要应用价值。在电网侧储能场景中,ST系列储能变流器需快速判断电网扰动后的稳定性并调整控制策略,该方法基于Transformer的注意力机制可实现毫秒级稳定性预判,指导GFM控制器动态调节虚拟惯量和阻尼参数...
基于混合深度学习方法的分数阶PID-PSS设计用于抑制电力系统振荡
Fractional Order PID-PSS Design Using Hybrid Deep Learning Approach for Damping Power System Oscillations
Devesh Umesh Sarkar · Tapan Prakash · Sri Niwas Singh · IEEE Transactions on Power Systems · 2024年6月
电力需求的急剧增长导致了传统电网的结构变化。现代电力系统包含先进的装置和设备,这使得维持可靠、安全的电力供应颇具挑战。低频振荡(LFO)是现代电力系统中一个显著的现象。为防止功角失稳,需要对这些振荡进行有效抑制。电力系统稳定器(PSS)通常用于解决这一问题。然而,传统的PSS在现代电网中无法有效抑制低频振荡。因此,本文采用混合深度学习方法,设计了一种将分数阶比例积分微分(FO - PID)控制器与传统PSS相结合的控制器。将卷积神经网络(CNN)和长短期记忆网络(LSTM)集成在一起形成CNN ...
解读: 该分数阶PID-PSS技术对阳光电源构网型储能系统具有重要应用价值。在PowerTitan大型储能系统并网运行中,低频振荡抑制是关键技术难点。文章提出的混合深度学习自适应参数整定方法,可直接应用于ST系列储能变流器的虚拟同步机VSG控制策略优化,通过分数阶控制器提升系统阻尼特性。该技术对阳光电源GF...
基于时空知识蒸馏的居民用户电力负荷预测
Electric Load Forecasting for Individual Households via Spatial-Temporal Knowledge Distillation
Weixuan Lin · Di Wu · Michael Jenkin · IEEE Transactions on Power Systems · 2024年4月
随着电网安全运行和家庭能源管理系统的发展,居民用户的短期负荷预测(STLF)日益重要。尽管机器学习在住宅STLF中表现有效,但本地设备的数据与资源限制制约了个体用户预测的精度。相比之下,电力公司拥有更丰富的数据和更强的计算能力,可部署基于图神经网络(GNN)等复杂模型,挖掘用户间的时空关联以提升预测性能。本文提出一种高效且保护隐私的知识蒸馏框架,通过将基于公用数据预训练的GNN模型中的时空知识迁移至轻量级个体模型,在不访问其他用户数据的前提下提升个体预测精度。在真实住宅负荷数据集上的实验验证了该...
解读: 该时空知识蒸馏负荷预测技术对阳光电源户用储能系统(如ST系列)和iSolarCloud平台具有重要应用价值。可将云端基于海量用户数据训练的GNN预测模型压缩至本地ESS控制器,在保护用户隐私前提下实现高精度负荷预测,优化储能充放电策略和光储协同控制。该轻量化模型可嵌入户用逆变器DSP/ARM芯片,降...
多任务图自适应学习在澳大利亚国家电力市场多元电价短期预测中的应用
Multi-Task Graph Adaptive Learning for Multivariate Electricity Price Short-Term Forecasting in Australia's National Electricity Market
Yi Li · Chaojie Li · Guo Chen · Xiaojun Zhou 等5人 · IEEE Transactions on Power Systems · 2024年4月
准确的电价短期预测对电力市场数字化至关重要。然而,可再生能源扩张与用电需求增长导致电价波动加剧,预测难度加大。供需不平衡的不确定性及电力市场的时空关联性是精准预测的主要障碍。本文提出一种多任务学习模型MGAAL,结合图注意力机制,并引入异常价格尖峰预测的辅助任务,提升泛化能力并降低过拟合风险。MGAAL采用基于注意力的图神经网络捕捉电力时空流动动态,并通过同方差不确定性和梯度归一化自适应调整任务权重。基于澳大利亚国家电力市场数据的实验表明,该模型性能优于当前先进方法。
解读: 该多任务图自适应学习电价预测技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统和ST系列储能变流器的能量管理策略中,精准的电价短期预测可优化充放电调度决策,通过峰谷套利提升收益。其图神经网络捕捉时空关联的方法可集成至iSolarCloud云平台,实现多站点储能协同优化。异常价...
第 2 / 2 页