← 返回
基于混合深度学习方法的分数阶PID-PSS设计用于抑制电力系统振荡
Fractional Order PID-PSS Design Using Hybrid Deep Learning Approach for Damping Power System Oscillations
| 作者 | Devesh Umesh Sarkar · Tapan Prakash · Sri Niwas Singh |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年6月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 低频振荡 电力系统稳定器 分数阶PID控制器 CNN - LSTM网络 棕熊优化算法 |
语言:
中文摘要
电力需求的急剧增长导致了传统电网的结构变化。现代电力系统包含先进的装置和设备,这使得维持可靠、安全的电力供应颇具挑战。低频振荡(LFO)是现代电力系统中一个显著的现象。为防止功角失稳,需要对这些振荡进行有效抑制。电力系统稳定器(PSS)通常用于解决这一问题。然而,传统的PSS在现代电网中无法有效抑制低频振荡。因此,本文采用混合深度学习方法,设计了一种将分数阶比例积分微分(FO - PID)控制器与传统PSS相结合的控制器。将卷积神经网络(CNN)和长短期记忆网络(LSTM)集成在一起形成CNN - LSTM网络,用于预测FO - PID - PSS的参数。通过敏感性分析获得CNN - LSTM网络所需的超参数,并通过棕熊优化算法(BOA)对其进行调整以提高性能。利用通过相位补偿技术(PCT)获得的FO - PID - PSS的实际参数对调整后的CNN - LSTM网络进行训练。考虑了系统在故障条件下运行的各种测试案例,以验证所提出的FO - PID - PSS的性能。
English Abstract
Steep increase in power demand led to structural change of conventional power networks. Modern power systems include advanced devices and equipment that make it challenging to maintain a reliable and secure power supply. The presence of low frequency oscillation (LFO) is a prominent phenomenon in modern power systems. Proper suppression of these oscillations is required to prevent rotor angle instability. Power system stabilizers (PSSs) are generally employed to tackle this issue. However, conventional PSSs are not capable of damping LFOs effectively in modern networks. Consequently, a fractional-order proportional integral derivative (FO-PID) controller combined with conventional PSS is designed using hybrid deep learning approach in this article. Convolutional neural network (CNN) and long-short term memory (LSTM) are integrated together to form the CNN-LSTM network, which is used to predict the parameters of FO-PID-PSS. Sensitivity analysis is performed to obtain the required hyperparameters of the CNN-LSTM network to be tuned through the brown-bear optimization algorithm (BOA) for enhanced performance. The training of a tuned CNN-LSTM network is done by the actual parameters of FO-PID-PSS obtained through the phase compensation technique (PCT). Diverse test cases of systems operating under contingent conditions are considered to validate the performance of the proposed FO-PID-PSS.
S
SunView 深度解读
该分数阶PID-PSS技术对阳光电源构网型储能系统具有重要应用价值。在PowerTitan大型储能系统并网运行中,低频振荡抑制是关键技术难点。文章提出的混合深度学习自适应参数整定方法,可直接应用于ST系列储能变流器的虚拟同步机VSG控制策略优化,通过分数阶控制器提升系统阻尼特性。该技术对阳光电源GFM构网型控制算法具有创新启发:可将深度学习与分数阶控制结合,实现多工况下的自适应参数调节,增强弱电网环境下储能系统的振荡抑制能力和并网稳定性,提升产品在新型电力系统中的适应性。