← 返回
储能系统技术 储能系统 深度学习 ★ 4.0

多任务图自适应学习在澳大利亚国家电力市场多元电价短期预测中的应用

Multi-Task Graph Adaptive Learning for Multivariate Electricity Price Short-Term Forecasting in Australia's National Electricity Market

作者 Yi Li · Chaojie Li · Guo Chen · Xiaojun Zhou · ZhaoYang Dong
期刊 IEEE Transactions on Power Systems
出版日期 2024年4月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 电价短期预测 多任务学习模型 图注意力机制 供需平衡不确定性 澳大利亚电力市场
语言:

中文摘要

准确的电价短期预测对电力市场数字化至关重要。然而,可再生能源扩张与用电需求增长导致电价波动加剧,预测难度加大。供需不平衡的不确定性及电力市场的时空关联性是精准预测的主要障碍。本文提出一种多任务学习模型MGAAL,结合图注意力机制,并引入异常价格尖峰预测的辅助任务,提升泛化能力并降低过拟合风险。MGAAL采用基于注意力的图神经网络捕捉电力时空流动动态,并通过同方差不确定性和梯度归一化自适应调整任务权重。基于澳大利亚国家电力市场数据的实验表明,该模型性能优于当前先进方法。

English Abstract

Accurate electricity price short-term forecasting plays an essential role in the digitization of the electricity market. However, due to the expansion of renewable energy resources and the development of electricity demands, electricity prices are increasingly volatile and difficult to predict, posing a significant threat to the security of daily electricity market operations. The uncertainty of the supply-demand balance, the spatiotemporal correlation of the electricity market are two major obstacles to making the forecasting precisely. In this paper, a multi-task learning model (MGAAL) utilizes a graph attention mechanism and incorporates an auxiliary task focused on predicting abnormal price spikes, enhancing generalization and reducing overfitting risk. Specifically, MGAAL employs attention-based Graph Neural Networks to enhance price forecasting by capturing temporal and spatial power flow dynamics. In addition, MGAAL can also adaptively assign task weights based on homoscedasticity uncertainty and gradient normalization of the tasks. Finally, our experiments, conducted using data from Australia's National Electricity Market (NEM), demonstrate the effectiveness of MGAAL, surpassing current state-of-the-art methods.
S

SunView 深度解读

该多任务图自适应学习电价预测技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统和ST系列储能变流器的能量管理策略中,精准的电价短期预测可优化充放电调度决策,通过峰谷套利提升收益。其图神经网络捕捉时空关联的方法可集成至iSolarCloud云平台,实现多站点储能协同优化。异常价格尖峰预测的辅助任务设计,能帮助储能系统提前响应电网调频需求,增强辅助服务收益。该技术对构建智能化储能EMS系统、提升澳洲等海外市场储能项目经济性具有直接指导意义,可与现有MPPT算法和GFM控制策略形成协同优化方案。