← 返回
基于失稳模式引导的模型更新方法用于数据驱动的暂态稳定性评估
Instability Pattern-Guided Model Updating Method for Data-Driven Transient Stability Assessment
| 作者 | Huaiyuan Wang · Fajun Gao · Qifan Chen · Siqi Bu · Chao Lei |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 电力系统暂态稳定评估 深度学习 模型更新 注意力分布 代表性数据集 |
语言:
中文摘要
深度学习方法广泛应用于电力系统暂态稳定性评估(TSA),但其结果缺乏可解释性且评估过程难以控制,限制了实际应用。本文提出一种失稳模式引导的模型更新方法以优化TSA模型。首先,构建基于Transformer编码器的TSA模型,通过注意力分布解释和分析预测结果;其次,引入注意力引导损失函数,针对特定失稳模式调整评估规则,提升分类精度;同时采用注意力保持损失,维持其他样本的评估能力并抑制过拟合;此外,基于注意力分布构建代表性数据集以降低更新成本。在IEEE 39节点系统与华东电网中的仿真验证了该方法的有效性。
English Abstract
Deep learning methods are widely adopted in power system transient stability assessment (TSA). However, the interpretability of the assessment results and the controllability of the assessment process hinder the further application of deep learning methods in practice. In this article, an instability pattern-guided model updating method is proposed to optimize the TSA model. Firstly, a TSA model based on Transformer encoder is proposed to explain and analyze the model's prediction through attention distribution. Secondly, an attention-guiding loss is employed to revise the assessment rules for specified instability patterns. The samples with specified instability patterns can be classified more accurately. Thirdly, an attention-keeping loss is employed to maintain the assessment rules for other samples and mitigate overfitting in the update. In addition, a representative dataset is introduced to reduce the update cost. The samples in the representative dataset are extracted from an original training set based on the attention distribution. The effectiveness of the proposed method is verified in the IEEE 39-bus system and the East China Power Grid system.
S
SunView 深度解读
该失稳模式引导的暂态稳定评估技术对阳光电源PowerTitan大型储能系统和构网型控制产品具有重要应用价值。在电网侧储能场景中,ST系列储能变流器需快速判断电网扰动后的稳定性并调整控制策略,该方法基于Transformer的注意力机制可实现毫秒级稳定性预判,指导GFM控制器动态调节虚拟惯量和阻尼参数。特别是注意力引导损失函数可针对特定失稳模式(如低频振荡、电压崩溃)优化识别精度,提升储能系统在弱电网环境下的支撑能力。该技术可集成至iSolarCloud平台,实现储能电站群的协调稳定控制,降低脱网风险,增强电网友好性。