← 返回
储能系统技术 储能系统 多电平 深度学习 ★ 4.0

一种结合局部-全局特征提取的混合深度学习框架用于智能电力系统稳定性评估

A Hybrid Deep Learning Framework With Local-Global Feature Extraction for Intelligent Power System Stability Assessment

作者 Wei Yao · Runfeng Zhang · Yurun Zhang · Shanyang Wei · Yutian Lan · Zhongtuo Shi
期刊 IEEE Transactions on Power Systems
出版日期 2025年5月
技术分类 储能系统技术
技术标签 储能系统 多电平 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 暂态仿真 主导不稳定模式 混合深度学习框架 特征提取 不稳定模式识别
语言:

中文摘要

暂态仿真对保障电力系统安全稳定运行至关重要。大扰动后,系统可能出现暂态功角失稳和短期电压失稳,二者电气特性相似但需不同控制策略,因此准确识别主导失稳模式(DIM)尤为关键。本文提出一种新型混合深度学习框架,通过充分提取电力数据中的局部-全局特征实现高精度DIM识别。该框架采用经随机采样与聚合优化的图神经网络以增强局部特征捕捉与模型泛化能力,并引入基于自注意力机制的Transformer网络挖掘关键全局特征。同时嵌入重要离散故障特征以提升性能。所提方法有效融合多层级特征,克服了现有模型局限于单一失稳模式的不足。在8机36节点系统及东北电网的实际案例验证了其优于当前主流深度学习方法的性能。

English Abstract

Transient simulation is the key to ensure the safe and stable operation of power systems. After large disturbances, power systems may experience transient rotor angle instability and short-term voltage instability, which share similar electrical characteristics but require different control strategies. Therefore, distinguishing the dominant instability mode (DIM) is crucial. In this paper, a novel hybrid deep learning (DL) framework is proposed to achieve accurate DIM identification by fully extracting local-global features from electricity data. In the proposed framework, an advanced graph neural network (GNN) optimized by random sampling and aggregation is constructed. It can better capture local features than traditional GNN and help to improve model generalization ability. Further, important global features are mined by employing transformer network with self-attention mechanism to improve DIM identification accuracy. In addition, the vital discrete fault features are also embedded into the neural networks to improve the performance. The proposed method improves upon existing DL models by providing a solution for integrating multi-level features extracted by different schemes and addressing the limitation of focusing on a single instability mode. Case studies conducted on an 8-machine 36- bus system and Northeast China Power Grid verify the superiority of the proposed method over other state-of-the-art DL methods.
S

SunView 深度解读

该混合深度学习框架对阳光电源储能系统和电网侧产品具有重要应用价值。在PowerTitan大型储能系统中,可实时识别电网暂态功角失稳与短期电压失稳的主导模式,为ST系列储能变流器提供差异化控制策略:功角失稳时优先调节有功功率支撑,电压失稳时侧重无功补偿。该框架的图神经网络与Transformer架构可嵌入iSolarCloud云平台,实现分布式光伏-储能系统的协同稳定性预测。局部-全局特征提取机制可优化构网型GFM控制器的自适应参数整定,提升新能源高渗透率场景下的电网支撑能力,为阳光电源智能电网解决方案提供AI驱动的稳定性保障技术。