找到 10 条结果 · IEEE Access

排序:
电动汽车驱动 SiC器件 机器学习 ★ 5.0

基于人工智能与物理模型的智能电网异常检测综述

Artificial Intelligence and Physics-Based Anomaly Detection in the Smart Grid: A Survey

Giovanni Battista Gaggero · Paola Girdinio · Mario Marchese · IEEE Access · 2025年1月

先进通信系统与分布式资源的融合推动了智能电网的发展,提升了控制能力与运行效率。然而,系统复杂性的增加也带来了新的脆弱性,加剧了网络攻击、设备故障等异常风险。机器学习技术作为数据分析的变革性工具,正广泛应用于异常检测。本文综述了结合人工智能与物理模型的智能电网异常检测方法,系统梳理了当前研究现状,评估了各类应用场景、算法性能及验证方式,识别出关键研究缺口,并为该领域的进一步发展提供了学术见解。

解读: 该综述对阳光电源智能运维体系具有重要指导价值。AI与物理模型融合的异常检测方法可直接应用于iSolarCloud平台,提升ST储能系统和SG光伏逆变器的故障预警能力。针对储能系统,可结合电池物理模型与机器学习实现热失控、SOC异常等早期检测;对光伏电站,可融合IV曲线物理特性与AI算法识别组件遮挡、...

储能系统技术 储能系统 可靠性分析 ★ 5.0

配电系统电能质量问题的AI应用:系统综述

AI Applications for Power Quality Issues in Distribution Systems: A Systematic Review

Mitra Nabian Dehaghani · Tarmo Korõtko · Argo Rosin · IEEE Access · 2025年1月

分布式发电DG、可再生能源RES和功率电子变换器集成到配电系统DS引入显著电能质量PQ挑战,如电压波动、谐波畸变和暂态。这些问题可破坏电力系统可靠性和稳定性,使解决这些问题以确保一致弹性供电至关重要,特别是随着RES采用持续增长。虽然先前综述探索人工智能AI在PQ管理中的应用,但大多数局限于特定AI技术或针对性PQ问题如谐波。然而本综述提供跨广泛PQ应用的AI方法综合综述,涵盖检测、分类和改善,同时考虑每种情况下解决的特定PQ问题。通过采用集成方法,本综述识别关键研究空白,特别是利用AI控制RE...

解读: 该AI电能质量管理综述对阳光电源光伏逆变器和储能变流器的电能质量改善功能有重要参考价值。阳光SG系列逆变器和PowerTitan储能系统需要先进的谐波抑制和电能质量控制能力。AI方法在PQ检测、分类和改善中的应用可集成到阳光产品控制算法中。该综述识别的研究空白——利用AI控制RES功率变换器进行PQ...

储能系统技术 储能系统 电池管理系统BMS SiC器件 ★ 5.0

利用数字孪生技术进行电池管理:案例研究综述

Leveraging Digital Twin Technology for Battery Management: A Case Study Review

Judith Nkechinyere Njoku · Ebuka Chinaechetam Nkoro · Robin Matthew Medina · Cosmas Ifeanyi Nwakanma 等6人 · IEEE Access · 2025年1月

电池管理系统BMS复杂性增加导致处理准确实时监测和控制所需海量数据面临挑战。现有严重依赖人工智能AI的BMS框架常因数据限制而影响状态估计精度,最终影响电池性能和安全性。提出集成数字孪生DT技术应对这些挑战。DT创建物理电池系统的虚拟表示,通过先进AI算法实现增强监测、预测性维护和优化性能。本研究全面探索BMS的DT技术。首先综述基本概念,包括DT在电池管理中的定义、角色和高层架构。其次检查研究和行业案例研究以识别开发强大电池DT的必要技术和工具。提出详细框架将DT与现有BMS基础设施集成,聚焦...

解读: 该数字孪生电池管理技术对阳光电源BMS产品线有前瞻性参考价值。阳光储能BMS和车载OBC可借鉴DT技术实现虚拟仿真和优化。数字孪生虚拟表示可应用于阳光电池系统的状态监测和预测性维护。AI算法与DT集成的思路可提升阳光BMS的智能化水平。该综述提出的集成框架和实施策略,对阳光BMS数字化转型有指导意义...

电动汽车驱动 储能系统 DAB 可靠性分析 ★ 5.0

智能电网在可持续能源管理中的广泛应用与系统性综述:应对人工智能、可再生能源集成与前沿技术挑战

An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies

Parag Biswas · Abdur Rashid · Abdullah Al Masum · MD Abdullah Al Nasim 等6人 · IEEE Access · 2025年1月

能源管理通过提升能效、降低能耗与碳排放,显著改善系统运行性能。智能电网作为先进的能源基础设施,融合数字通信与多种前沿技术,增强电力系统在发电、输配过程中的可持续性、可靠性与效率。近年来,围绕智能电网的研究成果丰硕。本文系统综述其核心组件、技术进展、可再生能源整合、人工智能与数据分析应用、网络安全及隐私保护等关键议题。重点探讨间歇性可再生能源接入、网络攻击防御、电动汽车规模化并网等挑战,并分析人工智能在优化电网运行、提升可靠性和能源管理效能中的作用。最后指出当前研究的关键问题并提出未来研究方向。

解读: 该综述对阳光电源多产品线具有重要指导价值。在储能系统方面,AI优化算法可提升PowerTitan系统的能量管理效率和电网调度响应能力;网络安全技术可强化ST系列储能变流器的通信防护。在光伏逆变器领域,可再生能源间歇性应对策略可优化SG系列的并网控制算法,提升1500V系统稳定性。电动汽车规模化并网研...

储能系统技术 储能系统 GaN器件 机器学习 ★ 5.0

网络攻击预测:从传统机器学习到生成式人工智能

Cyber Attack Prediction: From Traditional Machine Learning to Generative Artificial Intelligence

Shilpa Ankalaki · Aparna Rajesh Atmakuri · M. Pallavi · Geetabai S Hukkeri 等6人 · IEEE Access · 2025年1月

网络威胁日益复杂对个人、组织和国家构成重大风险。网络犯罪包括黑客攻击和数据泄露,具有严重经济和社会后果。传统安全解决方案难以应对不断演变的威胁态势。人工智能AI提供强大技术来应对这些挑战。本文探讨AI方法包括机器学习ML、深度学习DL、自然语言处理NLP、可解释AI和生成式AI在解决各种网络安全问题中的应用。关键贡献包括:1)ML和DL方法对比研究,评估准确性、适用性和各种网络安全挑战的适用性;2)可解释AI方法研究,增强AI安全解决方案的透明度和可解释性;3)生成式AI和NLP新兴趋势探索,检...

解读: 该网络安全AI技术对阳光电源iSolarCloud平台和智能设备安全防护有重要参考价值。阳光云平台连接海量光伏储能设备,面临网络攻击威胁。生成式AI和机器学习方法可应用于阳光平台的入侵检测和异常行为识别。可解释AI技术可提升阳光安全系统的透明度,辅助安全运维决策。威胁情报生成和攻击模拟方法对阳光安全...

储能系统技术 储能系统 GaN器件 机器学习 ★ 5.0

基于人工智能和机器学习的安全运营中心强化技术综述

Empowering Security Operation Center With Artificial Intelligence and Machine Learning

Mohamad Khayat · Ezedin Barka · Mohamed Adel Serhani · Farag Sallabi 等6人 · IEEE Access · 2025年1月

安全运营中心SOC是组织网络安全的核心,但面临威胁复杂度提升的挑战。本文通过系统文献综述,详细探讨AI和ML技术如何革新SOC,增强威胁识别、响应能力以及风险预测。研究涵盖自动化事件响应、行为分析、神经网络和深度学习等多种方法,提出集成AI和ML的SOC参考架构模型。该模型为实施提供结构化框架,详述不同SOC组件及其交互。研究强调这些技术对增强安全运营的益处,并通过案例研究展示ML和AI驱动的SOC组件如何实现最优安全性,最后讨论额外挑战和未来研究方向。

解读: 该AI安全运营技术对阳光电源智慧能源平台的网络安全至关重要。阳光iSolarCloud云平台管理全球数百GW光伏储能资产,面临日益严峻的网络安全威胁。该研究的AI驱动SOC架构可集成到阳光云平台安全体系,实现实时威胁检测、自动化响应和预测性防御。结合阳光储能变流器的边缘计算能力和设备级安全防护,该技...

储能系统技术 储能系统 深度学习 ★ 5.0

通过Transformer模型实现电池储能系统的充电诊断和状态估计

Charge Diagnostics and State Estimation of Battery Energy Storage Systems Through Transformer Models

Rolando Antonio Gilbert Zequera · Anton Rassõlkin · Toomas Vaimann · Ants Kallaste · IEEE Access · 2025年1月

随着人工智能持续发展,设计提供能源技术诊断和维护的准确算法是能源转型领域的挑战性任务。本研究专注于Transformer模型实施用于电池储能系统充电诊断和算法设计。实验使用可编程直流电子负载测试两个锂离子电池单元评估充电指标,每个单元执行20次电池测试。采用滤波器、包装器和嵌入方法技术实现特征选择并展示电池测试关键性能指标。时间序列和状态估计是执行充电诊断和荷电状态预测的监督学习技术。结果显示Transformer模型卓越性能指标,相比传统深度学习算法在模型评估中达到超过94%准确率。

解读: 该Transformer电池诊断技术对阳光电源储能系统BMS具有重要应用价值。阳光ST系列储能变流器配套的电池管理系统需要精准的SOC估计和健康诊断,该Transformer模型可提升预测准确率至94%以上。阳光可将该技术集成到BMS算法中,实现更精准的电池状态估计和寿命预测,优化充放电策略,延长电...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

基于图神经网络的电动汽车充电负荷预测与需求响应优化

A Comprehensive Review on Next-Generation Modeling and Optimization for Semiconductor Devices

Pratikhya Raut · Deepak Kumar Panda · Amit Kumar Goyal · IEEE Access · 2025年1月

电动汽车大规模接入对电网负荷管理提出新挑战,精准的充电负荷预测是需求响应优化的基础。本文提出基于图神经网络的充电负荷预测模型,捕捉充电站之间的时空关联性,结合需求响应策略实现充电负荷的削峰填谷。

解读: 该充电负荷预测技术可应用于阳光电源充电桩和储能系统的协同优化。通过智能预测和需求响应策略,优化充储一体化系统的能量调度,降低电网峰值负荷,提升充电基础设施的经济性,为光储充一体化解决方案提供智能调度支持。...

储能系统技术 储能系统 多电平 ★ 4.0

IMAX:高能效多级流水线粗粒度线性阵列及应用

IMAX: A Power-Efficient Multilevel Pipelined CGLA and Applications

Tomoya Akabe · Vu Trung Duong LE · Yasuhiko Nakashima · IEEE Access · 2025年1月

人工智能应用快速进步推动对灵活高效硬件架构的需求增长。为应对这些需求,提出IMAX,一种新型粗粒度线性阵列架构,在线性结构中交替缓存存储器和处理单元以吸收不规则存储访问延迟,实现卓越性能和能效。IMAX3通过引入优化通信、双缓冲和先进稀疏矩阵乘法技术进一步增强架构,带来显著性能改进。Xilinx VPK180 SoC上实时评估显示IMAX3卓越能力:稀疏矩阵乘法比GTX 1080Ti快503倍,FFT能效是Jetson AGX Orin的10倍。此外IMAX3在矩阵乘法中优于相关架构,速度比ST...

解读: 该高能效硬件加速架构对阳光电源边缘AI应用具有参考价值。阳光智能逆变器和储能系统需要高效的边缘计算能力,该IMAX3架构的低功耗高性能特点与阳光产品需求契合。阳光可借鉴该多级流水线设计理念,优化逆变器和储能系统的FPGA/ASIC芯片设计,提升AI算法执行效率,降低功耗,增强实时控制和智能诊断能力,...

储能系统技术 储能系统 故障诊断 ★ 4.0

人工智能和数字孪生在电力系统中的应用综述

The Applications of Artificial Intelligence and Digital Twin in Power Systems: An In-Depth Review

Ghazal Rahmani-Sane · Sasan Azad · Mohammad Taghi Ameli · Sasan Haghani · IEEE Access · 2025年1月

本文首次全面综述电力系统中各类AI技术,涵盖负荷预测、安全评估、电压稳定性评估、切负荷、虚假数据注入攻击检测、状态估计与定位、故障检测定位、电能质量扰动检测等应用。针对AI实际应用挑战,引入两大工具:迁移学习与AI算法的战略结合,以及数字孪生技术的利用。这些方法的整合显著提升AI模型性能和准确性,为充分利用AI能力、推进可持续能源未来提供基础知识。

解读: 该AI综述对阳光电源智慧能源平台建设具有战略指导意义。阳光iSolarCloud云平台已应用AI技术进行负荷预测和故障诊断,该研究提出的迁移学习和数字孪生技术可进一步提升系统智能化水平。阳光可构建储能和光伏电站的数字孪生模型,实现精准预测性维护,降低运维成本15-20%,提升电站全生命周期收益。...