← 返回
储能系统技术 储能系统 可靠性分析 ★ 5.0

配电系统电能质量问题的AI应用:系统综述

AI Applications for Power Quality Issues in Distribution Systems: A Systematic Review

作者 Mitra Nabian Dehaghani · Tarmo Korõtko · Argo Rosin
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式发电 可再生能源 电能质量 人工智能 研究综述
语言:

中文摘要

分布式发电DG、可再生能源RES和功率电子变换器集成到配电系统DS引入显著电能质量PQ挑战,如电压波动、谐波畸变和暂态。这些问题可破坏电力系统可靠性和稳定性,使解决这些问题以确保一致弹性供电至关重要,特别是随着RES采用持续增长。虽然先前综述探索人工智能AI在PQ管理中的应用,但大多数局限于特定AI技术或针对性PQ问题如谐波。然而本综述提供跨广泛PQ应用的AI方法综合综述,涵盖检测、分类和改善,同时考虑每种情况下解决的特定PQ问题。通过采用集成方法,本综述识别关键研究空白,特别是利用AI控制RES中功率变换器进行PQ改善的有限关注,因为大多数现有研究强调有源电力滤波器、补偿器和调节器等设备。综述还评估这些AI方法在准确性和总谐波畸变THD减少程度方面的有效性。提供新颖见解帮助指导研究人员、工程师和行业专业人士开发更自适应、可扩展和鲁棒的PQ解决方案。最后提出未来研究方向以推进基于AI的PQ管理,促进AI集成到多样化和演进的电力系统。

English Abstract

The integration of distributed generation (DG), renewable energy sources (RES), and power electronic converters into distribution systems (DSs) has introduced significant power quality (PQ) challenges, such as voltage fluctuations, harmonic distortions, and transients. These issues can undermine the reliability and stability of power systems, making it essential to address them to ensure a consistent and resilient power supply, especially as RES adoption continues to grow. While previous reviews have explored artificial intelligence (AI) applications for PQ management, most have been limited to specific AI techniques or targeted PQ problems, such as harmonics. This review, however, offers a comprehensive synthesis of AI-based approaches across a wide range of PQ applications, encompassing detection, classification, and improvement, while also considering the specific PQ issues addressed in each case. By adopting an integrated approach, this review identifies key research gaps, particularly the limited focus on leveraging AI to control power converters in RESs for PQ improvement, as most existing studies emphasize devices like active power filters, compensators, and conditioners. The review also evaluates the effectiveness of these AI methods in terms of accuracy and the extent of total harmonic distortion (THD) reduction. In addition, it provides novel insights that can help guide researchers, engineers, and industry professionals toward developing more adaptive, scalable, and robust PQ solutions. Finally, future research directions are proposed to advance AI-based PQ management, facilitating the integration of AI into diverse and evolving power systems.
S

SunView 深度解读

该AI电能质量管理综述对阳光电源光伏逆变器和储能变流器的电能质量改善功能有重要参考价值。阳光SG系列逆变器和PowerTitan储能系统需要先进的谐波抑制和电能质量控制能力。AI方法在PQ检测、分类和改善中的应用可集成到阳光产品控制算法中。该综述识别的研究空白——利用AI控制RES功率变换器进行PQ改善,正是阳光可发力的方向。THD减少技术对阳光并网设备EMC性能提升有价值。该综述提出的自适应可扩展PQ解决方案,可支撑阳光开发更智能的电能质量管理功能,提升产品竞争力和电网友好性。