← 返回
通过Transformer模型实现电池储能系统的充电诊断和状态估计
Charge Diagnostics and State Estimation of Battery Energy Storage Systems Through Transformer Models
| 作者 | Rolando Antonio Gilbert Zequera · Anton Rassõlkin · Toomas Vaimann · Ants Kallaste |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 人工智能 电池储能系统 Transformer模型 特征选择 荷电状态预测 |
语言:
中文摘要
随着人工智能持续发展,设计提供能源技术诊断和维护的准确算法是能源转型领域的挑战性任务。本研究专注于Transformer模型实施用于电池储能系统充电诊断和算法设计。实验使用可编程直流电子负载测试两个锂离子电池单元评估充电指标,每个单元执行20次电池测试。采用滤波器、包装器和嵌入方法技术实现特征选择并展示电池测试关键性能指标。时间序列和状态估计是执行充电诊断和荷电状态预测的监督学习技术。结果显示Transformer模型卓越性能指标,相比传统深度学习算法在模型评估中达到超过94%准确率。
English Abstract
With the continuous development of Artificial Intelligence (AI), designing accurate algorithms that provide diagnostics and maintenance of energy technologies is a challenging task in the energy transition domain. This research work focuses on the implementation of Transformer models for charge diagnostics and algorithm design of Battery Energy Storage Systems (BESSs). Experimentally, two Lithium-ion (Li-ion) battery cells were tested using a programmable DC electronic load to evaluate charge indicators, and 20 battery tests were performed for each cell. Filter, Wrapper, and Embedded methods are the techniques implemented to achieve Feature Selection and illustrate Key Performance Indicators (KPIs) in battery testing. Time series and state estimation are the Supervised Learning techniques executed for charge diagnostics and State of Charge (SOC) predictions. The results show remarkable performance metrics of the Transformer models, achieving over 94% accuracy in Model evaluation compared to traditional Deep Learning algorithms.
S
SunView 深度解读
该Transformer电池诊断技术对阳光电源储能系统BMS具有重要应用价值。阳光ST系列储能变流器配套的电池管理系统需要精准的SOC估计和健康诊断,该Transformer模型可提升预测准确率至94%以上。阳光可将该技术集成到BMS算法中,实现更精准的电池状态估计和寿命预测,优化充放电策略,延长电池使用寿命,提升储能系统经济性和安全性。