找到 13 条结果 · 风电变流技术
考虑尾流延迟特性的海上风电场LPV模型预测控制
LPV Model Predictive Control for Offshore Wind Farms Considering Wake Delay Characteristics
Yang Liu · Jiahao Lin · Ling-ling Huang · Cheng Hua 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月
大规模海上风电场中显著的尾流效应要求充分考虑其延迟特性,而该特性在控制中常被忽视。针对尾流动态演化与风机控制模型参数变化之间的耦合问题,本文提出一种考虑尾流延迟特性的线性参数可变(LPV)模型预测控制方法。通过构建准稳态尾流模型,将尾流延迟特性融入风电场LPV模型,并结合两阶段降维策略简化计算,协同优化疲劳损伤均衡与发电量提升。16台风机的仿真结果表明,所建模型能准确描述尾流延迟的空间分布,所提控制方法在风速风向动态变化下有效捕捉机组间风速延迟与波动特性,显著提高发电量并降低疲劳应力,且相比静态...
解读: 该研究的尾流延迟LPV模型预测控制技术对阳光电源的储能和风电产品具有重要参考价值。首先,其动态建模方法可优化ST系列储能变流器的功率预测算法,提升大型储能电站的调度效率。其次,文中的疲劳损伤均衡策略可应用于PowerTitan系统的电池管理,延长储能设备寿命。此外,该控制方法在处理多设备耦合方面的创...
含多台集成式双馈感应风力发电机的电力系统吸引域估计
Region of Attraction Estimation for Power Systems With Multiple Integrated DFIG-Based Wind Turbines
Yang Liu · Huanjin Yao · Pengyu Di · Yingjie Qin 等6人 · IEEE Transactions on Sustainable Energy · 2025年6月
针对含多台双馈感应风力发电机(DFIGWT)的电力系统缺乏适用建模方法,导致其吸引域(ROA)边界解析描述尚未充分研究的问题,本文提出一种包含多台DFIGWT的电力系统常微分方程(ODE)模型。该机电模型在单机无穷大系统和改进的3机9节点系统中验证,与完整模型轨迹比较的均方根误差低于9.5%,能准确捕捉低频动态特性。通过非线性坐标变换将其转化为多项式微分代数方程(DAE)模型,并采用基于平方和规划的改进扩展内点算法(EIA)估计ROA。在含多台DFIGWT与同步发电机的测试系统中验证了模型可行性...
解读: 该研究对阳光电源的储能与风电产品线具有重要参考价值。文中提出的多DFIG建模方法可用于优化ST系列储能变流器的并网控制策略,特别是在大规模风储联合并网场景中。通过吸引域(ROA)估计技术,可提升PowerTitan储能系统的暂态稳定性控制性能,为GFM/GFL控制算法优化提供理论支撑。研究成果可直接...
基于特征谱与扩张因果卷积及Squeeze-Excitation ShuffleNet轻量级深度学习的区域风电场日前低功率输出事件预测
Prediction of Day-Ahead Low-Power Output Events in Regional Wind Farms Using Feature Spectrums with Dilated Causal Convolution and Squeeze-Excitation ShuffleNet Lightweight Deep Learning
Zimin Yang · Xiaosheng Peng · Xiaobin Zhang · Guoyuan Qin 等6人 · IEEE Transactions on Power Systems · 2025年5月
区域风电场低功率输出事件的准确预测对电力系统的电网调度至关重要。然而,传统的风电预测方法主要侧重于提高整体预测精度,因此很少单独讨论风电低功率输出事件。本文提出了一种创新的区域风电场日前低功率输出事件预测方法,该方法利用特征频谱,结合扩张因果卷积(DCC)和挤压 - 激励(SE)改进的ShuffleNet网络。首先,将时间序列区域特征转换为频谱图像,在特征创建和选择后,引入并讨论了三种可能的特征排列方式。其次,提出了DCC - SE - ShuffleNet轻量级深度学习神经网络作为低功率输出事...
解读: 该研究的深度学习预测方法对阳光电源的新能源发电及储能产品具有重要应用价值。特征谱分析与轻量级深度学习模型可集成到ST系列储能变流器和SG系列光伏逆变器的控制系统中,提升功率预测精度。具体应用包括:(1)优化储能系统的充放电调度策略,提高PowerTitan等大型储能系统的经济性;(2)改进光伏/风电...
含风电渗透的信息物理电力系统连锁故障安全评估
Security Assessment of Cascading Failures in Cyber-Physical Power Systems with Wind Power Penetration
Xingye Xu · Kaishun Xiahou · Wei Du · Yang Liu 等6人 · IEEE Transactions on Power Systems · 2025年4月
本文提出一种高比例风电接入下的信息物理电力系统(CPPS)连锁故障安全评估方法。首先,建立考虑电力系统信息物理耦合及网络攻击风险的数学模型,并基于马尔可夫链蒙特卡罗(MCMC)方法构建风电随机模型。在此基础上,提出含风电接入的信息物理电力系统连锁故障模型。为提高连锁故障仿真的准确性,提出一种基于相位估计的线性潮流(PELPF)方法,该方法不仅能使计算精度与牛顿 - 拉夫逊法相当,还能显著提高计算效率并避免收敛问题。此外,基于PELPF方法构建了应对连锁故障中网络攻击的恢复控制模型。最后,引入两个...
解读: 该研究对阳光电源的储能与风电产品线具有重要参考价值。从技术层面,可直接应用于ST系列储能变流器的故障预警与安全防护系统,特别是在大型风储联合项目中的PowerTitan储能系统。研究提出的多阶段动态故障传播模型,有助于优化储能PCS的GFM控制策略,提升系统在高比例风电接入场景下的稳定性。同时,该安...
基于SCADA数据的周期增强型Informer模型用于短期风电功率预测
Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data
Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月
针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...
解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...
基于有限差分域-混合半机理建模的风力机自适应域调度多模型预测控制
Adaptive Domain Scheduling-Multiple Model Predictive Control for Wind Turbine Based on Finite Difference Domain-Hybrid Semi Mechanism Modelling
Zihao Li · Yang Hu · Weiran Wang · Fang Fang 等5人 · IEEE Transactions on Industrial Electronics · 2025年3月
为解决复杂不确定运行工况下考虑功率跟踪与载荷抑制的风力发电机组优化控制问题,提出了一种有限差分域 - 混合半机理(FDD - HSM)建模方法。基于该模型,针对自由输出(FO)和受限输出(LO)模式设计了一种自适应域调度 - 多模型预测控制(ADS - MMPC)策略。利用高性能实时目标机并与实际风力发电机组的全运行特性进行对比,验证了 FDD - HSM 方法的准确性。通过仿真进一步验证了 ADS - MMPC 算法的有效性,并将其与传统基于模型预测控制(MPC)的算法进行了对比。
解读: 从阳光电源的业务视角来看,这项针对风电机组的自适应域调度-多模型预测控制技术具有重要的跨领域借鉴价值。尽管研究对象是风力发电系统,但其核心思想与我司在光伏逆变器、储能系统及综合能源管理方面的技术需求高度契合。 该论文提出的有限差分域-混合半机理建模方法(FDD-HSM)解决了复杂工况下的精确建模难...
台风条件下含大规模海上风电的电力系统调度策略:一种两阶段样本鲁棒优化方法
Dispatch Strategy for the Power System With Large Offshore Wind Power Integration Under a Typhoon: A Two-Stage Sample Robust Optimization Approach
Jinhua He · Zechun Hu · Yang Liu · Zhiyuan Bao 等5人 · IEEE Transactions on Industry Applications · 2025年1月
台风作为极端天气事件,对电力系统的安全稳定运行构成重大威胁,尤其是那些接入大型海上风电场的电力系统。台风期间对电力系统的影响往往十分严重且难以预测。鉴于获取台风条件下风力发电数据存在挑战,本文利用台风的气压和风场模型,结合蒙特卡罗模拟,生成实时风电数据样本。随后,采用两阶段样本鲁棒优化(SRO)模型来解决大规模海上风电接入电力系统的机组组合(UC)问题。该模型将两阶段样本平均近似(SAA)与鲁棒优化原理相结合,确保了渐近最优性和强大的样本外性能。为处理决策中的非预见性问题,采用隐式决策规则指导火...
解读: 从阳光电源的业务视角来看,该论文提出的台风条件下海上风电调度优化方法具有重要的战略参考价值。随着我国海上风电装机规模快速增长,极端天气下的电网安全稳定运行已成为新能源并网领域的核心挑战,这与阳光电源在储能系统集成、新能源电站解决方案等业务板块高度契合。 论文采用的两阶段样本鲁棒优化方法为应对极端天...
一种面向多地点短期风速预测的以位置为中心的Transformer框架
A location-centric transformer framework for multi-location short-term wind speed forecasting
Luyang Zhao · Changliang Liu · Chaojie Yang · Shaokang Liu 等6人 · Energy Conversion and Management · 2025年1月 · Vol.328
准确的时空风速预测在电力系统优化和可再生能源效率提升中起着至关重要的作用。然而,传统模型通常将多个地点的历史风速数据合并到统一的特征通道中,这种做法削弱了其捕捉空间相关性的能力,从而降低了预测精度。本研究提出,在建模时空关系时保持各位置特有的差异性有助于提升预测性能。基于这一前提,本文构建了一种新颖的基于Transformer、具有以位置为中心架构的预测框架,并引入了若干关键创新:(1)一种时空门控融合单元,能够动态整合地理坐标与时间风速数据,同时保留位置特异性信息;(2)一种重构的Transf...
解读: 该位置中心化Transformer风速预测框架对阳光电源新能源管理系统具有重要应用价值。精准的多点短期风速预测可直接优化ST系列储能变流器的充放电策略,通过时空关联建模提升风光储协调控制精度。其双重增强机制可集成至iSolarCloud平台的预测性维护模块,结合地理坐标与时序数据的门控融合单元能改进...
风电功率预测中若干关键过程的综述:数学表达、科学问题与逻辑关系
Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations
Mao Yang · Yutong Huang · Chuanyu Xu · Chenyu Liu 等5人 · Applied Energy · 2025年1月 · Vol.377
摘要 风电功率预测(WPF)是大规模风电场并网运行下电力系统调度的关键技术。随着特征信息的不断丰富和计算机科学的发展,相关研究大量涌现。本文综述了特征挖掘方法和最新的预测模型结构,旨在为该领域提供最新的研究视角。文章将WPF过程方法划分为时频域分析、特征工程和预测器结构三个部分。首先,总结了各部分的整体与详细数学表达式,以提供更具普适性的WPF过程方法研究框架。特别地,在每一部分中,创新性地基于典型科学问题梳理了最新模型之间的逻辑关系。此外,本文还归纳了六种解决关键科学或工程问题的前沿预测器结构...
解读: 该风电功率预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。多源数据融合与时频域分析方法可优化储能系统的充放电策略,提升风储协同控制精度。特征工程与预测模型可集成至iSolarCloud平台,实现预测性维护与智能调度。文中提出的数据质量与可解释性挑战,与阳光电源GF...
通过风光互补降低气候变化对可再生能源系统的影响:基于CMIP6的全球研究
Reducing the impact of climate change on renewable energy systems through wind–solar blending: A worldwide study with CMIP6
Xiaokang Liu · Hongrong Shi · Dazhi Yang · Xiaolong Chen 等6人 · Solar Energy · 2025年1月 · Vol.290
摘要 气候变化缓解迄今仍是全球可持续发展的一项紧迫议题。气候变化可能改变极端天气事件的发生频率和强度,进而影响太阳能和风能发电。本研究采用10个CMIP6模型的数据,估算在全球碳中和关键时期(2040–2064年)三种不同共享社会经济路径(SSPs)下全球风能和光伏发电潜力的潜在变化。结果表明,在中欧地区,光伏发电潜力(PV POT)在SSP245情景下增加8%,极端低光伏发电日数(PV10)减少10天;而在阿拉伯半岛,PV POT下降4%,PV10则增加16天。对于风力发电(WP),在南俄罗斯...
解读: 该研究揭示气候变化下风光出力时空异质性,对阳光电源风光储融合系统具有重要价值。针对极端低出力事件(如阿拉伯半岛PV10增加16天、美国东部风电下降35%),ST系列储能变流器可通过长时储能平抑波动;SG系列光伏逆变器需强化MPPT算法应对辐照变化;PowerTitan系统可基于SSP情景预测优化容量...
基于动态重构混合互联变压器技术的双馈感应发电机风电系统故障穿越能力提升
Enhancing Fault Ride-Through Capability of DFIG-Based WECS Using Dynamic Reconfiguration Hybrid Interlinking Transformer Technique
Jinmu Lai · Yang Liu · Xin Yin · Lin Jiang 等6人 · IEEE Transactions on Sustainable Energy · 2024年11月
电网故障引发的电压跌落、骤升和谐波等异常工况严重威胁双馈感应发电机(DFIG)风电转换系统的安全运行。为提升DFIG的故障穿越能力并优化变流器容量利用,本文提出一种基于动态重构混合互联变压器(DR-HIT)的新型DFIG风电系统。通过分析拓扑结构与工作原理,设计了多种运行模式及灵活切换策略。在电网正常时,DR-HIT工作于并联模式,通过多功能变流器与网侧变流器协同控制平抑输出功率波动;发生电压故障时,自动切换至串联模式,维持机端电压稳定;故障恢复后,灵活返回并联模式。仿真与实验结果验证了该方案在...
解读: 该研究提出的DR-HIT动态重构技术对阳光电源的储能变流器和风电变流器产品具有重要参考价值。其创新的串并联动态切换方案可应用于ST系列储能变流器的电网故障穿越控制,提升系统在电压跌落工况下的稳定性。同时,该技术的多功能变流器协同控制思路可优化PowerTitan大型储能系统的功率调节性能。此外,文中...
弱电网条件下近区构网型变流器的稳定性判据
Stability Criterion for Near-Area Grid-Forming Converters Under the Weak Grid Condition
Peng Wang · Junpeng Ma · Rui Zhang · Shunliang Wang 等6人 · IEEE Transactions on Power Electronics · 2024年9月
本文引入了一种简化的稳定性判据,以系统地研究构网型风力发电机(GFM - WTG)之间,尤其是同一风电场内的相互作用机制。为了阐明在相同条件和控制器参数下运行的多个GFM - WTG之间的相互作用机制,本文提出了共模和差模电流、电压及阻抗的概念,这极大地简化了稳定性判据。由于忽略了基于GFM的永磁同步发电机机侧变流器的内部动态特性,因此可将GFM - WTG简化为基于GFM的电压源逆变器(GFM - VSI),且不失一般性。该稳定性判据揭示了共模和差模电流的特性,从而能够识别导致系统不稳定的主要...
解读: 从阳光电源的业务视角来看,这篇论文提出的构网型变流器稳定性判据具有重要的工程应用价值。随着公司在光伏、储能及风电领域的深度布局,构网型(Grid-Forming)技术已成为弱电网环境下保障系统稳定运行的核心解决方案。 该研究的核心贡献在于通过共模-差模分解方法,将多台构网型设备间复杂的交互机理简化...
基于引入欧拉算法的灰色预测理论的双绕组容错永磁电机驱动系统开路故障诊断策略研究
Research on Open Circuit Fault Diagnosis Strategy for DFPMM Drive System Based on Grey Prediction Theory With the Introduction of Euler Algorithm
Xuefeng Jiang · Shirui Yang · Xiaokang Weng · Zhijian Wei 等6人 · IEEE Transactions on Industrial Electronics · 2024年8月
双绕组容错永磁电机(DFPMM)具有功率密度高、效率高、运行稳定和容错能力强等特点,在军事和民用电力驱动系统中得到了有效应用。电气故障客观存在,任何单一电气故障都会影响电力驱动系统的可靠性。故障诊断和容错运行是电机驱动系统稳定运行的关键技术。针对传统开路故障(OCF)诊断方法速度不够快、智能化程度不足以及在负载突然变化时易误诊等问题,提出了一种基于引入欧拉算法的灰色预测理论的双绕组容错永磁电机驱动系统故障诊断策略。灰色预测理论可利用引入欧拉算法的灰色预测模型,用较少的数据对系统变化进行估计和预测...
解读: 从阳光电源的业务视角来看,这篇论文提出的基于改进灰色预测理论的开路故障诊断策略具有重要的应用价值。双绕组容错永磁电机(DFPMM)的高功率密度和强容错特性与我们在光伏逆变器、储能变流器及新能源汽车驱动系统中追求的技术方向高度契合。 该技术的核心价值在于通过引入欧拉算法优化灰色预测模型,实现了对功率...