← 返回
基于引入欧拉算法的灰色预测理论的双绕组容错永磁电机驱动系统开路故障诊断策略研究
Research on Open Circuit Fault Diagnosis Strategy for DFPMM Drive System Based on Grey Prediction Theory With the Introduction of Euler Algorithm
| 作者 | Xuefeng Jiang · Shirui Yang · Xiaokang Weng · Zhijian Wei · Jiazheng Liu · Zhixian Zhang |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2024年8月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 双绕组容错永磁电机 开路故障诊断 灰色预测理论 欧拉算法 电驱动系统可靠性 |
语言:
中文摘要
双绕组容错永磁电机(DFPMM)具有功率密度高、效率高、运行稳定和容错能力强等特点,在军事和民用电力驱动系统中得到了有效应用。电气故障客观存在,任何单一电气故障都会影响电力驱动系统的可靠性。故障诊断和容错运行是电机驱动系统稳定运行的关键技术。针对传统开路故障(OCF)诊断方法速度不够快、智能化程度不足以及在负载突然变化时易误诊等问题,提出了一种基于引入欧拉算法的灰色预测理论的双绕组容错永磁电机驱动系统故障诊断策略。灰色预测理论可利用引入欧拉算法的灰色预测模型,用较少的数据对系统变化进行估计和预测,具有所需样本数据少、预测精度高和操作简单等优点。对原始的GM(1,1)模型进行优化,通过改变原始数据序列的光滑度,引入欧拉算法迭代求解背景值,并对预测模型中的时间响应函数进行优化,以提高传统灰色预测GM(1,1)模型的精度。通过理论分析、仿真和实验结果验证,该策略能够实时准确诊断和定位系统中绕组功率晶体管的开路故障,提高了电力驱动系统的可靠性。
English Abstract
Dual-winding fault-tolerant permanent magnet motors (DFPMM) have the characteristics of high-power density, high efficiency, stable operation, and strong fault-tolerant ability. They are effectively used in military and civilian electric drive systems. Electrical faults objectively exist, and any single electrical fault will affect the reliability of the electric drive system. Fault diagnosis and fault-tolerant operation are key technologies for stable operation of motor drive systems. Aiming at the problems of traditional open circuit fault (OCF) diagnosis methods that are not fast enough, not intelligent enough, and prone to misdiagnosis when the load suddenly changes, a fault diagnosis strategy for DFPMM drive systems based on the introduction of Euler algorithm's grey prediction theory is proposed. The grey prediction theory can use less data to estimate and predict the changes in the system by using a grey prediction model that introduces the Euler algorithm. It has the advantages of requiring less sample data, high prediction accuracy, and simple operation. The original GM (1,1) model is optimized. By changing the smoothness of the original data sequence, the Euler algorithm is introduced to iteratively solve the background value and optimize the time response function in the prediction model to improve the accuracy of the traditional grey prediction GM (1,1) model. Through theoretical analysis, simulation, and experimental results, it has been verified that this strategy can accurately diagnose and locate the open circuit fault of the winding power transistor in the system in real time, improving the reliability of the electric drive system.
S
SunView 深度解读
从阳光电源的业务视角来看,这篇论文提出的基于改进灰色预测理论的开路故障诊断策略具有重要的应用价值。双绕组容错永磁电机(DFPMM)的高功率密度和强容错特性与我们在光伏逆变器、储能变流器及新能源汽车驱动系统中追求的技术方向高度契合。
该技术的核心价值在于通过引入欧拉算法优化灰色预测模型,实现了对功率开关管开路故障的快速、准确诊断。这对阳光电源的产品可靠性提升具有直接意义:在大型光伏电站和储能系统中,IGBT等功率器件的开路故障是导致系统停机的主要原因之一。传统诊断方法在负载突变时易误判,而该策略通过少量数据即可实现实时诊断定位,这与我们分布式电站运维场景中数据传输受限、要求快速响应的实际需求完全吻合。
从技术成熟度评估,灰色预测理论本身已较为成熟,论文通过背景值优化和时间响应函数改进提升了预测精度,且经过仿真和实验验证,具备工程化应用的基础。对于阳光电源而言,将此技术集成到逆变器和储能系统的控制算法中,可显著提升设备的智能诊断能力和故障预测水平,减少非计划停机时间。
然而也存在挑战:不同功率等级产品的参数适配、多故障耦合场景下的诊断准确性、以及算法在边缘计算平台上的实时性优化都需要深入研究。建议我们的研发团队关注该技术在1500V高压系统和大容量储能变流器中的适用性验证,这将为构建更可靠的新能源解决方案提供重要技术支撑。