← 返回
风电变流技术 深度学习 ★ 5.0

基于特征谱与扩张因果卷积及Squeeze-Excitation ShuffleNet轻量级深度学习的区域风电场日前低功率输出事件预测

Prediction of Day-Ahead Low-Power Output Events in Regional Wind Farms Using Feature Spectrums with Dilated Causal Convolution and Squeeze-Excitation ShuffleNet Lightweight Deep Learning

作者 Zimin Yang · Xiaosheng Peng · Xiaobin Zhang · Guoyuan Qin · Bo Wang · Chun Liu
期刊 IEEE Transactions on Power Systems
出版日期 2025年5月
技术分类 风电变流技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 区域风电场 低功率输出事件 预测方法 DCC - SE - ShuffleNet 特征频谱
语言:

中文摘要

区域风电场低功率输出事件的准确预测对电力系统的电网调度至关重要。然而,传统的风电预测方法主要侧重于提高整体预测精度,因此很少单独讨论风电低功率输出事件。本文提出了一种创新的区域风电场日前低功率输出事件预测方法,该方法利用特征频谱,结合扩张因果卷积(DCC)和挤压 - 激励(SE)改进的ShuffleNet网络。首先,将时间序列区域特征转换为频谱图像,在特征创建和选择后,引入并讨论了三种可能的特征排列方式。其次,提出了DCC - SE - ShuffleNet轻量级深度学习神经网络作为低功率输出事件的预测模型;输入为之前得到的频谱图像,输出为分类序列,用于表示是否发生低功率输出事件。最后,针对多个低功率输出事件阈值进行了案例研究,以验证所提方法的有效性。基于所提出的低功率输出事件预测方法,与传统的基于回归的方法相比,召回率、准确率、临界成功指数和F1分数分别提高了17.52%、13.97%、20.78%和15.99%,从而证明了该方法的有效性和优越性。

English Abstract

The accurate prediction of low-power output events in regional wind farms is important for the grid dispatch of the power system. However, conventional wind power prediction methods mainly focus on improving the overall accuracy, so wind low-power output events are rarely discussed separately. An innovative prediction method for day-ahead low-power output events in regional wind farms using feature spectrums with dilated causal convolution (DCC) and squeeze-excitation (SE)-improved ShuffleNet is proposed in this paper. First, the time-series regional features are transformed into spectrum images, in which three possible feature permutations are introduced and discussed after feature creation and selection. Second, the DCC-SE-ShuffleNet lightweight deep learning neural network is proposed as the prediction model for low-power output events; the input consists of the previously obtained spectrum images and the output is the categorized sequence to represent whether the low-power output events happened. Finally, case studies are presented at multiple thresholds of low-power output events to verify the proposed method. Based on the proposed low-power output events prediction method, the recall rate, accuracy rate, critical success index, and F1-score can be improved by 17.52%, 13.97%, 20.78%, and 15.99%, respectively, compared with conventional regression-based approaches, thus demonstrating the effectiveness and superiority of the proposed method.
S

SunView 深度解读

该研究的深度学习预测方法对阳光电源的新能源发电及储能产品具有重要应用价值。特征谱分析与轻量级深度学习模型可集成到ST系列储能变流器和SG系列光伏逆变器的控制系统中,提升功率预测精度。具体应用包括:(1)优化储能系统的充放电调度策略,提高PowerTitan等大型储能系统的经济性;(2)改进光伏/风电功率预测算法,增强iSolarCloud平台的智能运维能力;(3)为GFM/GFL控制提供更准确的功率预测输入,提升并网稳定性。该技术的轻量级特点也适合嵌入式系统实现,可显著提升产品智能化水平。