找到 6 条结果

排序:
光伏发电技术 ★ 5.0

一种考虑极端降雨时空特性的混合数据与知识驱动的分布式光伏系统风险预测方法

A Hybrid Data and Knowledge Driven Risk Prediction Method for Distributed Photovoltaic Systems Considering Spatio-Temporal Characteristics of Extreme Rainfalls

Yuxuan Wang · Bin Zhou · Cong Zhang · Siu Wing Or 等6人 · IEEE Transactions on Industry Applications · 2024年7月

本文提出一种结合基于知识与数据驱动的电气安全风险(ESR)预测方法,该方法考虑了极端降雨的时空特征,旨在识别因内涝导致高停机风险的分布式光伏系统(DPVS)。首先,建立了分布式光伏系统内涝的二维水动力偏微分模型,以推导极端降雨在时空异质性条件下淹没深度的动态分布。开发了一种基于快速图像分割的风险分区算法,以提取暴雨及内涝的非均匀空间分布和时间波动性,从而将分布式光伏系统划分为具有不同电气安全风险程度的多个区域。然后,从数学角度提出了一种基于知识的、考虑淹没深度和寄生电容的泄漏电流分析方法,以揭示...

解读: 从阳光电源的业务视角来看,这项针对分布式光伏系统极端降雨风险预测的研究具有重要的工程应用价值。当前我国分布式光伏装机规模快速增长,但极端天气导致的系统停机和电气安全事故已成为影响发电效率和资产安全的关键因素。该研究提出的知识与数据混合驱动方法,通过二维流体动力学模型模拟积水深度的时空演化,并结合漏电...

可靠性与测试 功率模块 ★ 4.0

基于老化特征参数的功率模块剩余使用寿命预测方法

Remaining Useful Lifetime Prediction Method of Power Modules Based on the Aging Characteristic Parameters

Luhong Xie · Erping Deng · Dianjie Gu · Weijie Wang 等6人 · IEEE Transactions on Power Electronics · 2024年9月

功率模块剩余使用寿命(RUL)预测对于实施热管理和设计有效维护方案具有重要意义。由于裂纹是功率模块老化的根本失效机制,无论是键合线失效还是焊层退化,本文首先描述了裂纹扩展过程并得出了通用的裂纹扩展规律。然后,基于一个简单的焊层模型,将该通用裂纹扩展规律拓展至老化特征参数的通用增长模式。利用新老功率模块的功率循环测试结果验证了该通用增长模式的准确性后,基于老化特征参数的通用增长模式提出了一种新的剩余使用寿命预测方法。最后,在易封装(EasyPACK)模块上应用了所提出的剩余使用寿命预测方法,预测寿...

解读: 从阳光电源的业务视角来看,这项基于老化特征参数的功率模块剩余寿命预测技术具有重要的战略价值。功率模块是光伏逆变器和储能变流器的核心部件,其可靠性直接影响系统的长期稳定运行和全生命周期成本。 该研究通过揭示裂纹扩展这一根本失效机理,建立了从键合线失效到焊料层退化的统一老化规律模型,这为我们的产品设计...

光伏发电技术 储能系统 深度学习 ★ 5.0

基于气泡熵融合与SCAD正则化的鲁棒模糊认知图在光伏发电预测中的应用

Learning a Robust Fuzzy Cognitive Map Based on Bubble Entropy Fusion With SCAD Regularization for Solar Power Generation

Shoujiang Li · Jianzhou Wang · Hui Zhang · Yong Liang · IEEE Transactions on Sustainable Energy · 2025年2月

精确可靠的光伏功率预测对智能电网的经济调度与稳定运行至关重要。针对太阳能固有的间歇性、非平稳性和随机性导致现有方法难以满足高精度预测需求的问题,本文提出一种结合气泡熵与平滑截断绝对偏差(SCAD)正则化的模糊认知图(FCM)预测方法(BesFCM)。该方法利用气泡熵融合两种模态分解技术以增强光伏数据特征的稳定性与判别性,构建融合模糊逻辑、神经网络与专家系统的FCM模型,并引入高阶SCAD正则化学习机制抑制过拟合,提升模型鲁棒性与泛化能力。实验结果表明,该方法在比利时多区域、多采样间隔的光伏数据集...

解读: 该鲁棒模糊认知图预测技术对阳光电源iSolarCloud智能运维平台和PowerTitan储能系统具有重要应用价值。其气泡熵融合与SCAD正则化方法可显著提升光伏功率预测精度,直接优化SG系列逆变器的MPPT算法和功率预测模块。在储能侧,精准的发电预测能改进ST系列储能变流器的充放电策略,降低备用容...

风电变流技术 储能系统 ★ 5.0

一种用于低风力发电预测的自监督预学习方法

A Self-Supervised Pre-Learning Method for Low Wind Power Forecasting

Weiye Song · Jie Yan · Shuang Han · Ning Zhang 等6人 · IEEE Transactions on Sustainable Energy · 2025年1月

随着风电在电力系统中占比提升,其出力间歇性导致的低功率风险日益突出,准确预测低风力发电对缓解电力短缺至关重要。然而,由于低风速事件稀少,传统方法面临样本不足难题,制约了预测精度提升。为此,本文提出一种自监督预学习方法,通过挖掘低出力样本间的相似性与差异性,分别预测低风力发电事件(LWPE)的发生时段和低风力发电过程(LWPP)的功率序列。针对LWPE预测,设计基于对比学习的孪生残差收缩网络,利用样本对进行特征预学习以缓解样本不平衡;对于LWPP预测,构建基于模式识别的嵌入式预测框架,将典型波动模...

解读: 该自监督预学习方法对阳光电源储能与风电产品线具有重要应用价值。可将其集成至ST系列储能变流器的EMS能量管理系统,提升风储联合运行策略的精准度;应用于PowerTitan大型储能系统的调度优化,实现对低风力时段的精准响应。该技术可优化iSolarCloud平台的预测算法,提高风电场群的运维效率。特别...

光伏发电技术 储能系统 可靠性分析 ★ 5.0

基于随机森林回归器的大型光伏电站异常检测工作流程

Anomaly Detection Workflow Using Random Forest Regressor in Large-Scale Photovoltaic Power Plants

João Lucas de Souza Silva · Marcelo Vinícius de Paula · Juliana de Souza Granja Barros · Tárcio André Dos Santos Barros · IEEE Access · 2025年1月

在大型光伏电站中,异常会降低系统性能与长期可靠性,影响运维计划和经济效益。由于电站产生的数据量庞大,异常检测面临巨大挑战,亟需减少人工干预的自动化工具。本文提出一种基于随机森林回归器的异常检测工作流程,并引入动态建模的数学阈值进行判别。模型利用阵列平面辐照度和温度等特征预测输出功率,并通过均绝对误差结合动态乘子设定预警与异常阈值。在多个逆变器及不同数据集划分下的实验表明,该方法总体准确率达99.69%,能有效识别电站内不同设备的异常,具备良好的适用性与推广价值。

解读: 该随机森林异常检测工作流程对阳光电源iSolarCloud智能运维平台具有直接应用价值。可集成至SG系列光伏逆变器和PowerTitan储能系统的智能诊断模块,通过辐照度、温度等多维特征实时预测设备输出功率,结合动态阈值实现99.69%准确率的异常识别。该方法可优化现有预测性维护策略,减少人工巡检成...

风电变流技术 深度学习 ★ 5.0

基于特征谱与扩张因果卷积及Squeeze-Excitation ShuffleNet轻量级深度学习的区域风电场日前低功率输出事件预测

Prediction of Day-Ahead Low-Power Output Events in Regional Wind Farms Using Feature Spectrums with Dilated Causal Convolution and Squeeze-Excitation ShuffleNet Lightweight Deep Learning

Zimin Yang · Xiaosheng Peng · Xiaobin Zhang · Guoyuan Qin 等6人 · IEEE Transactions on Power Systems · 2025年5月

区域风电场低功率输出事件的准确预测对电力系统的电网调度至关重要。然而,传统的风电预测方法主要侧重于提高整体预测精度,因此很少单独讨论风电低功率输出事件。本文提出了一种创新的区域风电场日前低功率输出事件预测方法,该方法利用特征频谱,结合扩张因果卷积(DCC)和挤压 - 激励(SE)改进的ShuffleNet网络。首先,将时间序列区域特征转换为频谱图像,在特征创建和选择后,引入并讨论了三种可能的特征排列方式。其次,提出了DCC - SE - ShuffleNet轻量级深度学习神经网络作为低功率输出事...

解读: 该研究的深度学习预测方法对阳光电源的新能源发电及储能产品具有重要应用价值。特征谱分析与轻量级深度学习模型可集成到ST系列储能变流器和SG系列光伏逆变器的控制系统中,提升功率预测精度。具体应用包括:(1)优化储能系统的充放电调度策略,提高PowerTitan等大型储能系统的经济性;(2)改进光伏/风电...