← 返回
一种用于低风力发电预测的自监督预学习方法
A Self-Supervised Pre-Learning Method for Low Wind Power Forecasting
| 作者 | Weiye Song · Jie Yan · Shuang Han · Ning Zhang · Shihua Liu · Chang Ge |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年1月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 低风电功率 预测方法 自监督预学习 低风电事件 低风电过程 |
语言:
中文摘要
随着风电在电力系统中占比提升,其出力间歇性导致的低功率风险日益突出,准确预测低风力发电对缓解电力短缺至关重要。然而,由于低风速事件稀少,传统方法面临样本不足难题,制约了预测精度提升。为此,本文提出一种自监督预学习方法,通过挖掘低出力样本间的相似性与差异性,分别预测低风力发电事件(LWPE)的发生时段和低风力发电过程(LWPP)的功率序列。针对LWPE预测,设计基于对比学习的孪生残差收缩网络,利用样本对进行特征预学习以缓解样本不平衡;对于LWPP预测,构建基于模式识别的嵌入式预测框架,将典型波动模式嵌入预测网络,提升小样本下的拟合能力。在三个风电场群上的实验表明,该方法将LWPP预测精度由84.99%-86.6%提升至89.97%,优于无预学习的传统方法。
English Abstract
As wind power is becoming a major energy source of power systems, the risk of power shortages due to its intermittent low power output is growing. Accurate forecasting of low wind power is crucial for mitigating these impacts. However, conventional methods struggle with few-sample issues due to the infrequent occurrence of low wind power, limiting accuracy improvements. To address this, a self-supervised pre-learning method is proposed to forecast low wind power occurrence period and output, leveraging the similarities and differences among low output samples to enhance forecasting accuracy. Low wind power output is decomposed into low wind power events (LWPE), which represent the occurrence timeframe, and low wind power processes (LWPP), which represent the power sequences. For LWPE forecasting, a siamese residual shrinkage network based on contrastive learning is introduced. This network pre-learns LWPE features from sample pairs to mitigate the impact of imbalanced sample distribution. For LWPP forecasting, a pattern recognition-based embedded forecasting framework is proposed, embedding typical LWPP fluctuations into the prediction network to improve fit under limited sample conditions. A case study on 3 wind farm clusters shows that this method improves LWPP forecasting accuracy from 84.99%-86.6% to 89.97%, outperforming traditional methods without pre-learning.
S
SunView 深度解读
该自监督预学习方法对阳光电源储能与风电产品线具有重要应用价值。可将其集成至ST系列储能变流器的EMS能量管理系统,提升风储联合运行策略的精准度;应用于PowerTitan大型储能系统的调度优化,实现对低风力时段的精准响应。该技术可优化iSolarCloud平台的预测算法,提高风电场群的运维效率。特别是在风储混合电站中,准确预测低风力发生时段有助于储能系统提前调度,实现更优的经济性。建议将此预学习方法与阳光电源现有的GFM/GFL控制策略结合,进一步提升风储协同性能。