← 返回
光伏发电技术 储能系统 可靠性分析 ★ 5.0

基于随机森林回归器的大型光伏电站异常检测工作流程

Anomaly Detection Workflow Using Random Forest Regressor in Large-Scale Photovoltaic Power Plants

作者 João Lucas de Souza Silva · Marcelo Vinícius de Paula · Juliana de Souza Granja Barros · Tárcio André Dos Santos Barros
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 大型光伏电站 异常检测 随机森林回归器 动态阈值 预测方法
语言:

中文摘要

在大型光伏电站中,异常会降低系统性能与长期可靠性,影响运维计划和经济效益。由于电站产生的数据量庞大,异常检测面临巨大挑战,亟需减少人工干预的自动化工具。本文提出一种基于随机森林回归器的异常检测工作流程,并引入动态建模的数学阈值进行判别。模型利用阵列平面辐照度和温度等特征预测输出功率,并通过均绝对误差结合动态乘子设定预警与异常阈值。在多个逆变器及不同数据集划分下的实验表明,该方法总体准确率达99.69%,能有效识别电站内不同设备的异常,具备良好的适用性与推广价值。

English Abstract

In large-scale photovoltaic (PV) plants, anomalies can affect performance, and maintenance schedules, and compromise long-term reliability, reducing the financial returns from the PV plant. Although the importance of anomaly detection in this context is clear, it poses a significant challenge due to the vast amount of data generated by the plant. Therefore, tools that assist in the anomaly detection process, minimizing human intervention, are essential. This paper proposes a workflow using a random forest regressor, with the application of a dynamically modeled mathematical threshold for anomaly detection. The model predicts the target power using features such as plane-of-array (POA) irradiance and temperature. To this end, Random Forest was selected after testing with other presented models, followed by the implementation of a mathematical model to establish a dynamic threshold that classifies the data as normal, alert, or anomaly. The threshold is calculated by comparing the mean absolute difference between predicted and actual power and adjusting it based on a dynamic multiplier to establish alert and anomaly limits. Subsequent tests were conducted on different inverters, applying various dataset splits. The workflow achieved excellent accuracy in detecting anomalies and alerts, with a total accuracy of 99.69%. The model successfully predicted anomalies in different inverters within the same plant. Thus, it is expected that the application of prediction methods, combined with the dynamic threshold, will serve as a support tool for anomaly detection in large-scale PV power plants.
S

SunView 深度解读

该随机森林异常检测工作流程对阳光电源iSolarCloud智能运维平台具有直接应用价值。可集成至SG系列光伏逆变器和PowerTitan储能系统的智能诊断模块,通过辐照度、温度等多维特征实时预测设备输出功率,结合动态阈值实现99.69%准确率的异常识别。该方法可优化现有预测性维护策略,减少人工巡检成本,提升大型光伏电站和储能电站的运维效率。特别适用于阳光电源海外GW级项目的远程监控场景,通过自动化异常预警降低系统停机损失,保障长期发电收益和设备可靠性,为ESS集成方案提供智能化运维技术支撑。