← 返回
风电功率预测中若干关键过程的综述:数学表达、科学问题与逻辑关系
Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations
| 作者 | Mao Yang · Yutong Huang · Chuanyu Xu · Chenyu Liu · Bozhi Dai |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The mathematical formulations are summarized in several aspects |
语言:
中文摘要
摘要 风电功率预测(WPF)是大规模风电场并网运行下电力系统调度的关键技术。随着特征信息的不断丰富和计算机科学的发展,相关研究大量涌现。本文综述了特征挖掘方法和最新的预测模型结构,旨在为该领域提供最新的研究视角。文章将WPF过程方法划分为时频域分析、特征工程和预测器结构三个部分。首先,总结了各部分的整体与详细数学表达式,以提供更具普适性的WPF过程方法研究框架。特别地,在每一部分中,创新性地基于典型科学问题梳理了最新模型之间的逻辑关系。此外,本文还归纳了六种解决关键科学或工程问题的前沿预测器结构。最后,讨论了若干发展趋势与挑战。其中,多源数据(包括但不限于数值天气预报NWP)及相关算法仍将是研究热点。同时,本文认为评估体系的构建可能为研究提供新的视角。数据质量、可重复性、数据隐私以及模型可解释性将成为未来面临的主要挑战与关注点。总体而言,本综述从多个角度为工程技术人员提供了重要的方法参考与研究启示。
English Abstract
Abstract Wind power forecasting (WPF) is the crucial technology for power system operation with large-scale grid-connected wind farms. A large number of related studies have emerged with the development of abundant features and computer science. This research reviews the feature mining methods and the latest predictor structure to provide the latest point of view in this field. It classifies the WPF process methods into time-frequency domain analysis, feature engineering, and predictor structures. Firstly, the overall and detailed mathematical formulations are summarized to provide a more generalized research version of WPF process methods. Particularly, in each part, the logical relations of the latest models are innovatively combed based on their typical scientific problems. In addition, this research summarizes six cutting-edge predictor structures that solve critical scientific or engineering problems. Finally, several developments and challenges are discussed. Among them, multi-source data (including but not limited to NWP) and algorithms still remain a research hotspot. Meanwhile, the study believes the engineering of evaluation may provide a new research perspective. The data quality, reproducibility, data privacy, and interpretability will be the challenges and concerns. In general, this review provides a critical methods reference and inspiration for engineers from multiple perspectives.
S
SunView 深度解读
该风电功率预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。多源数据融合与时频域分析方法可优化储能系统的充放电策略,提升风储协同控制精度。特征工程与预测模型可集成至iSolarCloud平台,实现预测性维护与智能调度。文中提出的数据质量与可解释性挑战,与阳光电源GFM/VSG控制技术的实时响应需求高度契合,为构建新能源场站级智能管理系统提供方法论支撑,助力风光储一体化解决方案优化。