← 返回
考虑尾流延迟特性的海上风电场LPV模型预测控制
LPV Model Predictive Control for Offshore Wind Farms Considering Wake Delay Characteristics
| 作者 | Yang Liu · Jiahao Lin · Ling-ling Huang · Cheng Hua · Ruanming Huang · Yang Fu |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年7月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 模型预测控制MPC 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 海上风电场 尾流延迟特性 LPV模型预测控制 准稳态尾流模型 发电优化 |
语言:
中文摘要
大规模海上风电场中显著的尾流效应要求充分考虑其延迟特性,而该特性在控制中常被忽视。针对尾流动态演化与风机控制模型参数变化之间的耦合问题,本文提出一种考虑尾流延迟特性的线性参数可变(LPV)模型预测控制方法。通过构建准稳态尾流模型,将尾流延迟特性融入风电场LPV模型,并结合两阶段降维策略简化计算,协同优化疲劳损伤均衡与发电量提升。16台风机的仿真结果表明,所建模型能准确描述尾流延迟的空间分布,所提控制方法在风速风向动态变化下有效捕捉机组间风速延迟与波动特性,显著提高发电量并降低疲劳应力,且相比静态模型控制,有效抑制控制超调,提升系统整体性能。
English Abstract
The pronounced wake effect in large-scale offshore wind farm necessitates careful consideration of its delay characteristics, which are crucial yet often overlooked in control. Addressing the coupling between the dynamic evolution of wake effects and the parameter changes of the WT control model, this paper introduces a Linear Parameter-Varying (LPV) model predictive control method that considers wake delay characteristics. Through the development of a quasi-steady state wake model, the wake delay characteristic is incorporated within an LPV model for the wind farm. A two-stage dimensionality reduction method is proposed to simplify the calculation, and a model predictive control (MPC) method is combined to optimize the fatigue damage balance and power generation enhancement in the wind farm coordinately. Simulation results from a wind farm consisting of 16 wind turbines validate the efficacy of the quasi-steady state wake model in depicting the spatial distribution of wake delays. Furthermore, in dynamically varying wind speed and directions scenarios, the proposed control method can effectively capture the wind speed delay and fluctuation characteristics between different wind turbines, leading to heightening power output and diminishing fatigue stresses. Notably, in comparison to the static model control, the adaptive parameter tuning mechanism inherent in the proposed method effectively curtails control overshoot, enhancing overall system performance.
S
SunView 深度解读
该研究的尾流延迟LPV模型预测控制技术对阳光电源的储能和风电产品具有重要参考价值。首先,其动态建模方法可优化ST系列储能变流器的功率预测算法,提升大型储能电站的调度效率。其次,文中的疲劳损伤均衡策略可应用于PowerTitan系统的电池管理,延长储能设备寿命。此外,该控制方法在处理多设备耦合方面的创新,可启发阳光电源优化风储联合运行控制策略,完善iSolarCloud平台的智能调度功能。特别是其降维计算方法,有助于提升大规模新能源场站的实时控制性能。