← 返回
基于数据驱动灵敏度的风电场分散式需求功率跟踪与电压控制方法
A Decentralized Demanded Power Tracking and Voltage Control Method for Wind Farms Based on Data-Driven Sensitivities
| 作者 | Chang Yan · Sheng Huang · Yinpeng Qu · Xueping Li · Wenbo Tang · Ying Yuan |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年1月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 模型预测控制MPC 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风电场 功率跟踪 电压控制 数据驱动灵敏度 模型预测控制 |
语言:
中文摘要
风电场高效功率调度依赖于精确的需求功率跟踪。本文提出一种基于数据驱动灵敏度(DDS)的分散式风电场功率跟踪与电压控制方法,仅利用本地运行变量实现模型预测控制(MPC),获得近似全局最优解。通过反向传播算法设计新的灵敏度计算方法,由全局映射模型(GMM)梯度得到DDS。电压DDS可替代传统MPC中的电压灵敏度,功率DDS建立不同风电机组出力间的线性关系,简化状态空间方程,降低二次规划维度。所设计的三种控制模式无需线路参数、降低计算复杂度或兼具两者优势。变量间距约束线性化方法将非线性约束转为线性,解决控制变量间非线性耦合问题。MATLAB/Simulink中32台风电机组的仿真验证了该方法的有效性,性能接近集中式控制。
English Abstract
Efficient power dispatch in wind farms (WFs) hinges on precise demanded power tracking. This study proposes a decentralized WF power tracking and voltage control method based on data-driven sensitivities (DDSs). This method relies only on local operational variables for model predictive control (MPC), achieving near-global optimal solutions. With a backpropagation algorithm, a new sensitivity calculation method is designed to yield DDSs by computing the gradients of a global mapping model (GMM). The voltage DDSs can be derived simply by calculating the gradient of the voltage GMM and can replace the voltage sensitivities in traditional MPC methods. The power DDSs establishes linear relationships between the power outputs of different wind turbines (WTs), simplifying the WF state-space equations to local prediction models for reducing the quadratic programming dimensions. The three control modes designed based on DDSs enable control without WF line parameters, reduce computational complexity, or combine both effects. The variable spacing constraint linearization method transforms nonlinear constraints into linear ones, addressing the nonlinear coupling between control variables. Testing on a WF with 32 WTs in MATLAB/Simulink demonstrates the effectiveness of the proposed method comparable to centralized control methods.
S
SunView 深度解读
该文提出的数据驱动灵敏度控制方法对阳光电源的储能和风电产品线具有重要参考价值。特别是其分散式控制架构可应用于ST系列储能变流器集群和PowerTitan大型储能系统的协调控制,通过本地数据实现近似全局最优的功率调度。文中的电压DDS方法可优化储能变流器的电压控制性能,功率DDS的线性化处理思路可用于简化多机并网系统的状态空间模型。这些创新对提升阳光电源储能产品的电压稳定性和功率调度效率具有启发意义。同时,该方法也可移植到风电变流器的电压/功率协调控制中,助力阳光电源在风电领域的技术突破。