找到 11 条结果 · 电动汽车驱动
基于混合注意力深度强化学习的健康感知集成热管理策略
Health-Conscious Integrated Thermal Management Strategy Using Hybrid Attention Deep Reinforcement Learning for Battery Electric Vehicles
Changcheng Wu · Jiankun Peng · Dawei Pi · Xin Guo 等6人 · IEEE Transactions on Power Electronics · 2025年6月
有效的热管理策略(TMS)可以延长纯电动汽车(BEV)的续航里程,并在高温环境下提高车内热舒适性。考虑到集成热管理系统(ITMS)的发展趋势以及动力电池在纯电动汽车中的关键作用,本文建立了一个嵌入电池健康意识的集成热管理系统模型。为进一步挖掘所提出的集成热管理系统的温度控制和节能潜力,采用双延迟深度确定性策略梯度算法(TD3)设计了一种学习型热管理策略。鉴于集成热管理系统内复杂的状态信息,引入了一种混合注意力机制对原始TD3算法进行优化,使TD3智能体能够辨别各种状态信息的相对重要性,从而提高其...
解读: 从阳光电源的业务布局来看,这项基于混合注意力深度强化学习的电动汽车热管理技术具有显著的战略价值。该研究将电池健康意识嵌入集成热管理系统,通过TD3算法实现了电池健康退化降低22.50%、能量损失减少35.33%的效果,这与我司在储能系统和电动汽车动力解决方案领域的核心诉求高度契合。 从技术迁移角度...
基于无模型深度强化学习的微电网能量管理
Energy Management in Microgrids Using Model-Free Deep Reinforcement Learning Approach
Odia A. Talab · Isa Avci · IEEE Access · 2025年1月
随着智能电网技术的发展,微电网在整合风能、太阳能等可再生能源方面发挥着关键作用。然而,可再生能源的间歇性及电动汽车与快充站负荷的增长,给微电网运行的稳定性与效率带来挑战。本文提出一种无模型的实时能量管理策略,无需传统不确定性建模即可应对源荷双重不确定性。将问题建模为马尔可夫决策过程,并采用基于Actor-Critic架构的深度确定性策略梯度算法实现动态优化。仿真结果表明,该方法总成本降至51.8770 €ct/kWh,较Dueling DQN和DQN分别降低3.19%和4%,验证了其在现代微电网...
解读: 该无模型深度强化学习能量管理技术对阳光电源微电网解决方案具有重要应用价值。可直接应用于PowerTitan储能系统与ST系列储能变流器的能量调度优化,通过DDPG算法实现光伏-储能-充电桩的实时协同控制,无需复杂的不确定性建模即可应对源荷波动。该方法可集成至iSolarCloud云平台,提升微电网E...
基于事件驱动的强化学习预测控制器设计——用于三相NPC变流器的在线逼近器方法
Event-Driven Based Reinforcement Learning Predictive Controller Design for Three-Phase NPC Converters Using Online Approximators
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年12月
本文针对电力变换器系统,研究了一种利用在线逼近器的无模型强化学习预测控制问题的两步事件驱动方法,解决了系统不确定性和不必要的开关损耗等问题。具体而言,本技术报告的关键特点如下:1) 采用一个评判神经网络实时学习性能函数;2) 采用一个执行神经网络在线逼近预测控制器,并使从评判网络获得的学习性能函数最小化;3) 采用两步事件驱动控制协议降低开关频率(SF)。此外,我们进一步探讨了该方案对参数不确定性的敏感性,并量化了其在低开关频率运行和未知干扰条件下的性能。此外,还对网络权重估计误差进行了收敛性分...
解读: 从阳光电源的业务视角来看,这项基于事件驱动的强化学习预测控制技术对三相NPC变流器的应用具有重要战略价值。NPC(中点钳位)拓扑是我司大功率光伏逆变器和储能变流器的核心架构,该技术在提升系统性能和降低运维成本方面展现出显著潜力。 该论文提出的双步事件驱动控制策略直接针对变流器的两大痛点:一是通过在...
面向电动汽车协调的两阶段输电系统运营商-配电系统运营商服务提供框架
Two-Stage TSO-DSO Services Provision Framework for Electric Vehicle Coordination
Yi Wang · Dawei Qiu · Fei Teng · Goran Strbac · IEEE Transactions on Power Systems · 2024年12月
高比例可再生能源接入导致电力系统惯性下降,对频率响应服务的需求日益增加。电动汽车(EV)凭借车网互动(V2G)能力可为输电系统运营商(TSO)提供经济高效的频率调节服务,但其在参与频率支撑时可能引发电压安全问题,影响配电系统运营商(DSO)运行。为此,本文提出一种两阶段多电动汽车服务提供框架:第一阶段参与日前TSO-DSO频率备用调度;第二阶段在配电网中实时执行备用交付并支持电压调节。针对大规模EV与复杂环境,第二阶段采用去中心化调控范式,并设计通信高效的强化学习算法以降低多智能体训练的通信开销...
解读: 该两阶段TSO-DSO协调框架对阳光电源充电桩与储能业务具有重要应用价值。文章提出的去中心化强化学习算法可直接应用于阳光电源充电桩产品,实现V2G双向充放电时的频率-电压协同控制,避免频率支撑服务引发配网电压越限。该框架与PowerTitan储能系统的多层级调度架构高度契合:日前阶段可优化储能参与辅...
基于物理引导的强化学习进行停电缓解
Blackout Mitigation via Physics-Guided RL
Anmol Dwivedi · Santiago Paternain · Ali Tajer · IEEE Transactions on Power Systems · 2024年10月
本文研究针对系统异常的顺序校正控制策略设计,以防止停电事故。提出一种物理引导的强化学习框架,综合考虑长期稳定性影响,识别有效的实时前瞻性校正决策序列。控制空间包含离散的线路投切操作与连续的发电机调节。通过引入电力网络潮流灵敏度因子指导智能体训练过程中的探索,提升策略质量。基于Grid2Op平台的实验表明,融合物理信号显著优于黑箱方法。值得注意的是,战略性地断开部分输电线路并配合多步发电机调节,常可形成有效延缓或避免停电的长周期决策。
解读: 该物理引导强化学习框架对阳光电源PowerTitan储能系统和构网型控制技术具有重要应用价值。研究中的潮流灵敏度因子引导策略可直接应用于ST系列储能变流器的实时功率调节决策,在电网异常时通过多步序列控制优化有功/无功输出,配合线路投切信号实现主动支撑。该方法与阳光电源GFM构网型控制技术深度契合,可...
基于深度强化学习的逆变器控制器:增强含电弧炉电网中可再生能源的集成
Deep Reinforcement Learning Enabled Inverters: Strengthening RES Integration in Grids With Electric Arc Furnaces
Ebrahim Balouji · Özgül Salor · Safwan Al Khatib · IEEE Transactions on Industry Applications · 2024年9月
本文介绍了一种用于支撑电网的逆变器控制系统的开发,旨在将可再生能源(RES)接入电网,以应对存在诸如电弧炉(EAF)等间歇性负载的具有挑战性的工况。采用基于深度学习的方法,运用深度确定性策略梯度(DDPG)这一强化学习(RL)算法,对电网进行建模、估算电压和相角,并控制支撑电网的逆变器。目标是开发一种能产生虚拟惯量的支撑电网的逆变器,以稳定由间歇性负载引发的电网频率问题,并实现可再生能源(RES)与电力系统的无缝集成。使用DDPG无需一些传统的估算工具,如快速傅里叶变换(FFT)、同步参考坐标系...
解读: 该深度强化学习逆变器控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器在工业电网应用具有重要价值。针对电弧炉等非线性负载引起的电压波动、谐波畸变问题,可增强现有构网型GFM控制策略,实现负序与无功功率的自适应动态补偿。该技术可应用于:1)PowerTitan储能系统在钢铁、冶金等工业园区的电能...
基于物理信息强化学习的可再生能源实时最优潮流控制
Physics-Informed Reinforcement Learning for Real-Time Optimal Power Flow With Renewable Energy Resources
Zhuorui Wu · Meng Zhang · Song Gao · Zheng-Guang Wu 等5人 · IEEE Transactions on Sustainable Energy · 2024年8月
针对可再生能源大规模接入带来的强不确定性,电力系统调度对实时性提出了更高要求。为实现实时环境下经济且可行的发电运行,本文提出一种基于约束强化学习(CRL)的物理信息强化学习(PIRL)方法用于最优潮流(OPF)求解。该方法设计了基于潮流方程的物理信息执行器,确保生成满足等式约束的发电方案,并通过在策略梯度中引入不等式约束来修正不可行动作。特别地,与传统CRL中使用网络逼近不同,所提方法可直接基于执行器输出精确计算约束相关成本。在IEEE 118节点系统上的仿真结果表明,该方法在获得相近发电成本的...
解读: 该物理信息强化学习技术对阳光电源储能与光伏并网系统具有重要应用价值。针对PowerTitan大型储能系统和SG系列光伏逆变器的实时功率调度,该方法可嵌入iSolarCloud云平台,实现毫秒级最优潮流计算,显著优于传统优化算法。其约束强化学习框架可直接应用于储能变流器的多目标协调控制,在满足电网安全...
基于模仿专家经验的可解释深度强化学习在电动汽车智能充电中的应用
Interpretable Deep Reinforcement Learning With Imitative Expert Experience for Smart Charging of Electric Vehicles
Shuangqi Li · Alexis Pengfei Zhao · Chenghong Gu · Siqi Bu 等6人 · IEEE Transactions on Power Systems · 2024年7月
深度强化学习(DRL)因计算效率高,有望实现复杂系统的在线优化控制,但其可解释性与可靠性限制了在智能电网能量管理中的工程应用。本文首次提出一种新颖的模仿学习框架,用于解决电网连接电动汽车(GEV)充电管理中的高效计算问题。通过基于车网互动(V2G)成本效益分析的先验优化模型生成最优策略,并构建专家经验池以配置学习环境。设计双Actor-Imitator网络结构,实现专家知识向强化学习模型的有效迁移,提升训练效率与调度性能。实验结果表明,该方法在英国某示范微网中有效提升了V2G经济效益并缓解了电池...
解读: 该可解释深度强化学习技术对阳光电源充电桩产品线及储能系统具有重要应用价值。文章提出的模仿学习框架可直接应用于阳光电源V2G充电桩的智能调度算法,通过专家经验池加速DRL训练,提升充电策略的可靠性与可解释性,解决传统黑盒AI在电网能量管理中的工程化难题。该方法可集成至iSolarCloud云平台,实现...
基于深度强化学习并考虑电驱动系统热特性的混合动力汽车能量管理策略
Energy management strategy for hybrid electric vehicles based on deep reinforcement learning with consideration of electric drive system thermal characteristics
Juhuan Qin · Haozhong Huang · Hualin Lu · Zhaojun Li · Energy Conversion and Management · 2025年1月 · Vol.332
摘要 深度强化学习已成为实现混合动力汽车在线优化能量管理的有力候选方法。然而,以往的研究尚未考虑混合电驱动系统中关键部件整体热特性对系统性能的影响。本文针对插电式混合动力汽车,提出一种基于深度确定性策略梯度算法并考虑电驱动系统热特性的能量管理策略,旨在将电池和电机的温度控制在安全范围内,同时提升车辆的整体性能。首先,构建了电池与电机的温度模型,并将其引入能量管理策略框架中;其次,采用基于深度确定性策略梯度的智能算法调节权重系数,以实现多目标之间的协调优化。基于多种典型循环工况开展了仿真实验,结果...
解读: 该深度强化学习热管理策略对阳光电源电动汽车驱动系统及储能产品具有重要价值。在电机驱动器方面,可借鉴其温度预测模型优化功率器件(SiC/IGBT)热管理,降低损耗并延长寿命;在储能PCS(ST系列)中,可应用DDPG算法实现电池热状态动态调控,提升PowerTitan等系统循环寿命;在充电桩OBC产品...
基于强化学习与多目标模型预测控制的热电联产机组灵活经济运行双层优化策略
A bi-level optimization strategy for flexible and economic operation of the CHP units based on reinforcement learning and multi-objective MPC
Keyan Zhu · Guangming Zhang · Chen Zhu · Yuguang Niu 等5人 · Applied Energy · 2025年1月 · Vol.391
摘要 提升热电联产(CHP)机组的综合性能对于消纳可再生能源和实现节能减排具有重要意义。为此,本文提出一种基于强化学习(RL)与多目标模型预测控制(MOMPC)的双层优化策略,以提升CHP机组的灵活性与经济运行性能。首先,构建了CHP机组模型,并将其各类参数纳入MOMPC的滚动优化过程中,作为下层跟随者以求解基础控制问题。其次,提出了一种融合双延迟深度确定性策略梯度(TD3)算法与MOMPC的双层优化策略(TD3-MOMPC),将TD3智能体设定为上层领导者;通过分解复杂的灵活性需求与CHP机组...
解读: 该双层优化策略对阳光电源储能系统(ST系列PCS/PowerTitan)具有重要应用价值。TD3强化学习与多目标MPC结合的架构可借鉴至储能参与调频调峰场景:上层TD3智能体动态调整MPC权重和预测时域,下层MPC执行功率控制,实现灵活性与经济性平衡。该方法可优化储能系统在新能源消纳中的充放电策略,...
基于联邦强化学习的多连接混合动力汽车集成热能与能量隐私保护管理
Privacy-preserving integrated thermal and energy management of multi connected hybrid electric vehicles with federated reinforcement learning
Arash Khalatbarisoltani · Jie Han · Muhammad Saee · Cong-zhi Liu 等5人 · Applied Energy · 2025年1月 · Vol.385
摘要 深度强化学习(DRL)算法在针对预定义驾驶循环下开发单个混合动力电动汽车(HEV)最优能量管理策略(EMS)方面已展现出优异的性能。然而,在该研究领域中,热负荷及热管理(TM)的影响常被忽视。此外,HEV可能面临未见过的驾驶模式,从而影响EMS的整体性能。连接型HEV(C-HEV)提供了有前景的解决方案,但仍存在隐私、安全和通信负载等问题。本文提出一种基于联邦强化学习(FRL)的新型集成热能与能量管理(ITEM)方法,旨在实现多个C-HEV之间的通用化策略。该框架能够在拓展多环境学习能力的...
解读: 该联邦强化学习架构对阳光电源充电桩及储能系统具有重要价值。其隐私保护的分布式学习机制可应用于iSolarCloud平台,实现多站点充电桩协同优化而无需上传敏感数据。热管理与能量管理集成策略可迁移至ST系列PCS的温控优化,通过多储能站点联合学习提升功率变换效率和电池热管理性能。云端-边缘协同架构与阳...