← 返回
一种基于物理与数据辅助的抽水蓄能电站瞬态过程预测框架
A physics-based and data-aided transient prediction framework for sustainable operation of pumped-storage hydropower systems
| 作者 | Weichao Maa · Zhigao Zhao · Chengpeng Liu · Fei Chen · Weijia Yang · Wei Zeng · Elena Vagnoni · Jiandong Yang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 384 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Propose a transient prediction framework for pumped-storage hydropower systems. |
语言:
中文摘要
摘要 实现对抽水蓄能电站(PSHSs)瞬态过程的准确预测仍是一个关键挑战,主要由于现场参数存在不确定性,特别是泵-水轮机特性曲线(PTCCs)的不确定性,以及物理模型自身存在的局限性。为解决这一问题,本研究提出了一种以现场测量数据为核心的抽水蓄能电站瞬态预测框架,该框架融合了基于物理模型的校准与数据驱动的修正方法。本文提出了一种利用点分布模型(PDMs)重构PTCC的方法,其中PDM作为先验模型,通过在PTCC上定义多个特征点以适应可能发生的非刚性变形,并进行了创新性开发。该方法采用曲面重构算法,仅需稳态和瞬态实验中的有限实测数据即可实现完整PTCC的重构。为进一步补偿基于物理模型的误差,本文进一步提出了一种基于外生输入非线性自回归(NARX)模型的数据辅助修正方法。该NARX模型通过选取与物理模型预测误差相关性最高的最敏感模型输入变量进行最优调参。与传统模型相比,在所有实验案例中,所提出的框架分别将流量、蜗壳压力、尾水管压力和转速的预测趋势误差平均降低了10.82%、13.88%、36.67%和7.37%。所提出的瞬态预测框架能够对抽水蓄能电站多种瞬态过程实现高精度预测,可为实时监测系统提供预警基础,从而促进抽水蓄能电站的可持续运行。
English Abstract
Abstract Achieving accurate predictions of transient processes for pumped-storage hydropower stations (PSHSs) remains a key challenge due to uncertainties in on-site parameters, particularly the pump-turbine characteristic curves (PTCCs), and limitations of the physics-based models themselves. To address this issue, this study proposes a transient prediction framework for PSHSs, centered on on-site measurements and incorporating both the physics-based model calibration and the data-aided correction. A method for reconstructing PTCCs using point distribution models (PDMs) is proposed, where PDMs act as prior models and are innovatively developed by defining multiple feature points on PTCCs to accommodate potential non-rigid deformations. This approach allows the reconstruction of complete PTCCs using a surface reconstruction algorithm, requiring only limited measured data from steady-state and transient experiments. To further compensate for errors in the physics-based model, a data-aided correction using nonlinear autoregressive with exogenous inputs (NARX) is proposed. The NARX model is optimally tuned by selecting the most sensitive model inputs which have the highest correlations with the predicted error of the physics-based model. Compared with the conventional model, the proposed framework reduces the predicted tendency errors for discharge, pressure at the volute , pressure at the draft tube, and rotational speed by average values of 10.82 %, 13.88 %, 36.67 %, and 7.37 %, respectively, across all experimental cases. The proposed transient prediction framework enables highly accurate predictions for a diverse range of transient processes of PSHSs and serves as a pre-warning basis for real-time monitoring systems , facilitating the sustainable operation of PSHSs.
S
SunView 深度解读
该物理-数据混合瞬态预测框架对阳光电源储能系统具有重要借鉴价值。抽水蓄能电站的特性曲线重构方法可应用于ST系列PCS和PowerTitan储能系统的动态建模,通过现场实测数据校准物理模型,结合NARX神经网络修正预测误差,可显著提升储能系统在电网调频、削峰填谷等瞬态工况下的控制精度。该方法与iSolarCloud平台的预测性维护功能深度融合,可实现储能电站实时监控预警,优化VSG虚拟同步发电机控制策略,提升GFM构网型储能系统的暂态稳定性,支撑新型电力系统可持续运行。