← 返回
基于深度学习与遥感的城市土地分类对光伏潜力的分析
PV potential analysis through deep learning and remote sensing-based urban land classification
| 作者 | Hongjun Tan · Zhiling Guo · Yuntian Chen · Haoran Zhang · Chenchen Song · Mingkun Jiang · Jinyue Yan |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 387 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A framework is proposed to evaluate the impact of urban land on PV installation availability and power generation. |
语言:
中文摘要
城市土地在商业、居住、草地及其他行政分区中的利用情况将影响可再生能源基础设施(如光伏板)的可用安装面积。将土地利用类型纳入光伏潜力评估对于优化空间配置、贴近能源需求中心以及提升系统效率至关重要。为解决以往研究忽视城市土地利用问题的局限性,本文提出一个融合遥感数据与深度学习方法的框架,实现八类细粒度和三类粗粒度的土地利用分类。该框架针对每种土地利用类型计算其可安装光伏系统的面积,并结合2023年年均太阳辐照量评估其发电潜力。案例研究表明,德国海尔布隆(Heilbronn)地区的土地适合地面光伏安装,年发电量可达5333.85 GWh;而在新西兰基督城(Christchurch),屋顶光伏安装的发电效益最高,年发电量为3290.08 GWh。单位面积发电潜力最高的分别为海尔布隆的未利用土地和基督城的商业用地。最后,本文讨论了采用σi对光伏安装比例进行不确定性分析以及潜力估算的置信区间。本研究成功验证了该框架的有效性,揭示了不同土地利用类型的光伏安装比例对发电量的影响,为城市土地利用规划与光伏设施布局提供了有价值的指导。
English Abstract
Abstract Urban land utilization for commerce, residence, grassland, and other administrative subdivisions will affect the available area for renewable infrastructure setup, such as photovoltaic (PV) panels. Incorporating land use types into PV potential assessments is essential for optimizing space allocation, aligning with energy demand centers, and enhancing efficiency. To address the limitations of previous studies that overlook urban land use, this study introduces a framework leveraging remote sensing data and deep learning methods to achieve eight fine-grained and three coarse-grained land use classifications. The framework calculates the PV installation area for each land use type and evaluates their power generation potential based on the yearly average solar irradiance in 2023. Case studies demonstrate that Germany Heilbronn land is suitable for ground PV installations, with a power generation of 5333.85 GWh/year, and rooftop PV installations are the most productive for electricity generation in New Zealand Christchurch, with 3290.08 GWh/year. Unutilized land in Heilbronn and Commercial land in Christchurch is estimated to be the most productive per unit area. Finally, the uncertainty of the PV installation ratio by adopting σ i and the confidence interval of potential estimation is discussed. This work experiments with the framework successfully and highlights the effects of the PV installation ratio on the power generation of each land use, providing valuable instructions for urban land utilization and PV installation.
S
SunView 深度解读
该研究基于深度学习和遥感数据的城市土地分类与光伏潜力评估框架,对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。通过精细化土地利用分类(商业、住宅、未利用地等),可优化地面光伏与屋顶光伏的配置策略。研究中不同地类的单位面积发电潜力差异,可指导阳光电源1500V系统和MPPT优化技术的场景化部署。光伏安装比例的不确定性分析,为iSolarCloud平台的预测性运维和容量规划提供数据支撑,助力实现城市能源需求中心的高效匹配与智能化管理。