← 返回
开发基于深度学习的硅基太阳能电池模型用于聚光光伏系统:面向高效应用的实时性能预测
Developing deep learning-based model for silicon-based solar cells in concentrator photovoltaic systems: A real-time prediction for efficient application-oriented performance
| 作者 | Mohamed M.Elsabahy · Mohamed Emam · Sameh A. Nad |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Developing a deep learning-based model for real-time performance prediction of PV cells. |
语言:
中文摘要
摘要 聚光光伏(CPV)技术利用高强度的入射太阳辐射,通过紧凑且成本效益高的散热器实现电能输出与热能利用的结合。然而,最大化聚光比需要强化冷却,从而产生大量低温热能。另一方面,为了使这些低温热能达到热驱动应用所需的温度水平,必须协调多个运行和设计参数,包括聚光比和散热器特性。这一问题可通过传统的有限体积法(FVM)结合优化技术或在不同冷却方式下针对宽范围聚光比进行的大量参数研究来数值揭示,但这种方法需要极高的计算成本和时间。为应对这一挑战,本研究提出一种基于深度学习的模型,作为计算高效的替代方案,用于硅基太阳能电池实时性能预测。该模型使用来自一个经过数值模拟和实验验证的三维热-流体FVM模型的大规模数据集进行训练和验证。这些数据集涵盖了聚光比、散热器传热系数、气象条件(环境温度和风速)、电池参考特性(参考效率和温度系数)以及电池结构的广泛变化,实现了全面的输入-输出映射。优化后的神经网络表现出高精度和高可靠性,均方误差极小,决定系数接近1。此外,开发了一款具有图形用户界面(GUI)的用户友好型软件,支持两种分析模式:通过动态调整设计参数实现实时性能优化,以及对大规模参数研究提供实时求解。这种新颖的工作流程显著降低了计算成本和处理时间,能够瞬时生成特性性能图谱(CPMAPs)。所提出的方案加速了聚光光伏应用中的决策过程,并可推广至其他能源相关技术领域,为工业界和科研界提供了一种变革性的工具。
English Abstract
Abstract Concentrator photovoltaic (CPV) technology harnesses intense incident solar radiation, offering the potential for simultaneous electrical power generation and thermal utilization via compact, cost-effective heat sinks. However, maximizing the concentration ratio necessitates intensive cooling, resulting in low-grade heat generation. On the other hand, to achieve the demanded temperature of this low-grade heat generation for thermally driven applications, several operational and design parameters, including concentration ratio and heat sink characteristics, need to be harmonized. This can be numerically revealed using the conventional finite volume method (FVM) through optimization techniques/intensive parametric studies for wide-range concentration ratios under different cooling techniques which needs a prohibited computational cost and time. Addressing this challenge, the present work develops a deep learning-based model as a computationally efficient alternative for real-time performance prediction of silicon-based solar cells. The model is trained and validated using extensive datasets from a numerically and experimentally validated 3D thermal-fluid FVM model. These datasets cover wide variations in concentration ratios, heatsink heat transfer coefficients , meteorological conditions (ambient temperature and wind speed), cell reference characteristics (reference efficiency and temperature coefficient), and cell structure providing a comprehensive input-output mapping. The optimized neural network demonstrates high accuracy and reliability with a minimal mean square error and a coefficient of determination approaching unity. Furthermore, a user-friendly software with a graphical user interface (GUI) is developed, enabling two modes of analysis: real-time performance optimization through dynamic design parameter adjustments and real-time solutions for massive parametric studies. This novel workflow significantly reduces computational costs and processing times, facilitating instantaneous generation of characteristic performance maps (CPMAPs). The proposed approach accelerates decision-making for CPV applications and can be extended to other energy-related technologies, offering a transformative tool for both industry and research communities.
S
SunView 深度解读
该深度学习CPV性能预测技术对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。文中提出的实时性能优化模型可集成至智能运维系统,通过神经网络快速预测不同气象条件下的发电效率,替代传统有限元仿真的高计算成本。该方法可应用于MPPT算法优化,实现动态参数调整;同时为PowerTitan储能系统的热管理提供预测性维护依据。基于GUI的特征性能图谱生成技术,可增强iSolarCloud平台的决策支持能力,加速光储一体化系统的设计迭代与现场调试效率。