← 返回
风电变流技术 SiC器件 ★ 5.0

一种数据-物理混合驱动的大规模风电场布局优化框架

A data-physics hybrid-driven layout optimization framework for large-scale wind farms

作者 Peiyi Li · Yanbo Ch · Anran Hu · Lei Wang · Mengxiang Zheng · Xiaojiang Guo
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 392 卷
技术分类 风电变流技术
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Navier–Stokes equations with variable parameters are used to guide the layout optimization.
语言:

中文摘要

摘要 全球风能利用的发展趋势正朝着建设大规模、远距离风电场的方向推进,而战略性的布局优化对于提升风电场发电量至关重要。然而,大规模风电场布局优化(WFLO)面临诸多挑战,主要体现在涉及高维决策变量的复杂计算,以及在尾流模型精度与计算效率之间需要进行权衡。为解决上述问题,本文提出了一种新颖的数据-物理混合驱动的大规模风电场布局优化框架。该框架尝试将含可变参数的物理方程融入建模过程,以指导尾流效应的建模,并进一步促进布局优化的实现。具体而言,本文提出了物理信息引导的双神经网络(PIDNN)模型用于风速估计,该模型通过双神经网络将可变推力系数引入纳维-斯托克斯(Navier–Stokes)方程中。此外,采用基因靶向差分进化(GTDE)算法对风电场布局进行优化,该算法专为大规模优化问题设计。仿真结果表明,所提出的PIDNN模型能够有效估计尾流区域的风速。进一步地,所提出的优化框架优于现有对比方法,在发电量方面达到了最高水平。

English Abstract

Abstract The global trend of wind energy utilization moves towards building large-scale and remotely-located wind farms , while strategic layout optimization is crucial to improving the power generation of wind farms . However, large-scale wind farm layout optimization (WFLO) faces challenges due to complicated calculations involving the high-dimensional decision variables and the need to trade-off between wake model accuracy and efficiency. To address these issues, this paper proposes a novel data-physics hybrid-driven framework for layout optimization of large-scale wind farms . This framework attempts to integrate physical equations with variable parameters to guide the modeling of wake effects and further facilitate the layout optimization process. Specifically, the physics-informed dual neural network (PIDNN) model is proposed to estimate the wind velocity . This model incorporates a variable thrust coefficient into the Navier–Stokes equations through dual neural networks. Moreover, the gene-targeted differential evolution (GTDE) algorithm is employed to optimize the wind farm layout, which is particularly designed for large-scale optimization problems. Simulation results demonstrate that the proposed PIDNN can estimate wake velocity effectively. Furthermore, the proposed optimization framework outperforms competing methods, achieving the highest power generation.
S

SunView 深度解读

该数据-物理混合驱动的大规模风电场布局优化框架对阳光电源风电变流器及储能系统具有重要借鉴价值。其物理信息双神经网络(PIDNN)模型通过融合Navier-Stokes方程与可变推力系数,实现尾流效应精准建模,可启发阳光电源在风储一体化项目中优化ST系列储能变流器的功率调度策略。基因定向差分进化算法(GTDE)处理高维优化问题的能力,可应用于iSolarCloud平台的大规模新能源场站智能运维,提升发电效率。该混合驱动方法论亦可拓展至光伏阵列MPPT优化及充电站负荷预测,增强阳光电源全场景能源管理能力。