← 返回
风电变流技术 SiC器件 ★ 5.0

海上风力涡轮机塔架设计与优化:综述及人工智能驱动的未来方向

Offshore wind turbine tower design and optimization: A review and AI-driven future directions

作者 João Alves Ribeiro · Bruno Alves Ribeiroc · Francisco Pimenta · Sérgio M.O. Tavares · Jie Zhangg · Faez Ahmed
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 397 卷
技术分类 风电变流技术
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Summarize foundational background on offshore wind turbine tower design and optimization.
语言:

中文摘要

摘要 海上风能利用海洋风的高强度和稳定性,在向可再生能源转型过程中发挥着关键作用。随着能源需求的增长,需要更大规模的风力涡轮机以优化发电量并降低平准化度电成本(Levelized Cost of Energy, LCoE),即项目生命周期内电力的平均成本。然而,涡轮机的大型化带来了工程上的挑战,尤其是在支撑结构、特别是塔架的设计方面。塔架必须在保持结构完整性、成本效益和可运输性的同时承受增大的载荷,因此对海上风电项目的成功至关重要。本文全面综述了人工智(Artificial Intelligence, AI)驱动下的海上风力涡轮机(Offshore Wind Turbine, OWT)结构设计优化领域的最新进展、面临的挑战以及未来发展方向,重点聚焦于塔架结构。文章深入介绍了若干关键技术领域,包括设计类型、载荷类型、分析方法、设计流程、监测系统、数字孪生(Digital Twin, DT)技术、软件工具、标准规范、参考涡轮机型号、经济因素以及优化技术等内容。此外,本文还对塔架设计优化相关的优化研究进行了前沿进展评述,详细考察了现有研究中涉及的涡轮机类型、所用软件、载荷条件、优化方法、设计变量与约束条件、分析过程及主要研究成果,旨在推动未来研究进一步完善设计方法,以实现高效涡轮机的放大与性能提升。最后,本文探讨了人工智能在未来塔架设计优化中的潜在革命性作用,有望促进高效、可扩展且可持续结构的发展。通过应对大型化带来的技术挑战并支持可再生能源产业的增长,本研究为海上风力涡轮机塔架及其他支撑结构的未来发展提供了重要指导。

English Abstract

Abstract Offshore wind energy leverages the high intensity and consistency of oceanic winds, playing a key role in the transition to renewable energy. As energy demands grow, larger turbines are required to optimize power generation and reduce the Levelized Cost of Energy (LCoE), which represents the average cost of electricity over a project’s lifetime. However, upscaling turbines introduces engineering challenges, particularly in the design of supporting structures, especially towers. These towers must support increased loads while maintaining structural integrity, cost-efficiency, and transportability, making them essential to offshore wind projects’ success. This paper presents a comprehensive review of the latest advancements, challenges, and future directions driven by Artificial Intelligence (AI) in the design optimization of Offshore Wind Turbine (OWT) structures, with a focus on towers. It provides an in-depth background on key areas such as design types, load types, analysis methods, design processes, monitoring systems, Digital Twin (DT) technology, software, standards, reference turbines, economic factors, and optimization techniques. Additionally, it includes a state-of-the-art review of optimization studies related to tower design optimization, presenting a detailed examination of turbines, software, loads, optimization methods, design variables and constraints, analysis, and findings, motivating future research to refine design approaches for effective turbine upscaling and improved efficiency. Lastly, the paper explores future directions where AI can revolutionize tower design optimization, enabling the development of efficient, scalable, and sustainable structures. By addressing the upscaling challenges and supporting the growth of renewable energy, this work contributes to shaping the future of offshore wind turbine towers and other supporting structures.
S

SunView 深度解读

海上风电塔架AI优化技术对阳光电源风电变流器及储能系统具有重要借鉴价值。文中提出的数字孪生技术、预测性维护和AI驱动优化方法,可直接应用于ST系列储能变流器的结构设计优化和iSolarCloud平台的智能运维升级。特别是在大型化趋势下,三电平拓扑与SiC器件的协同优化、GFM控制策略的自适应调节,以及基于AI的LCOE降本路径,为阳光电源海上风电配套储能方案和风电变流器产品的结构轻量化、成本优化提供创新思路,助力可再生能源规模化发展。