← 返回
基于DETR的视障人士辅助技术目标检测增强方法
Enhancing Object Detection in Assistive Technology for the Visually Impaired: A DETR-Based Approach
| 作者 | Sunnia Ikram · Imran Sarwar Bajwa · Sujan Gyawali · Amna Ikram · Najah Alsubaie |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 视障人士导航 障碍物检测识别 深度学习 DETR模型 实时图像处理 |
语言:
中文摘要
本文提出实时障碍物检测识别系统,通过辅助技术增强视障人士导航。系统集成配备微型相机的移动应用实现实时图像采集,采用深度学习技术进行目标检测分类。对YOLOv8、Faster R-CNN和DETR进行比较评估。DETR表现最优,达到99%置信度、98%精度和40毫秒/帧处理速度。系统遵循结构化工作流程,包括实时采集、预处理、创新数据增强和TensorFlow Lite边缘设备优化。可分类80种障碍物类型如行人、车辆和交通信号,提供即时音频反馈确保安全导航。模型训练20轮达到98%准确率。该研究引入可扩展实用解决方案,集成IoT和实时图像处理,赋能视障用户增强移动性和安全性。
English Abstract
This paper presents a real-time obstacle detection and recognition system designed to enhance navigation for visually impaired individuals through assistive technology. The system integrates a mobile application equipped with a mini camera for real-time image capture and employs advanced deep learning techniques for object detection and classification. A comparative evaluation of YOLOv8, Faster R-CNN and DETR (Detection Transformer) is conducted based on precision, Recall, F1-score, confidence score and processing efficiency. DETR demonstrates superior performance, achieving a 99% confidence score, 98% precision and a processing speed of 40ms per frame. While faster R-CNN and YOLOv8 provide competitive results, they offer a trade-off between accuracy and computational efficiency. The system follows a structured a structured workflow, including real-time acquisition, preprocessing, innovative data augmentation and optimization for edge devices using TensorFlow Lite for efficiency deployment. It classifies 80 types of obstacles, such as pedestrians, vehicles and traffic signal and provides immediate audio feedback to ensure safe navigation. The model trained over 20 epochs achieves an accuracy of 98% in the final epoch. This study introduces a scalable and practical solution integrating IoT and real-time image processing, empowering visually impaired users with enhanced mobility and safety.
S
SunView 深度解读
该目标检测技术可应用于阳光电源智能光伏电站巡检系统。阳光大型地面电站采用无人机和机器人巡检,需要高精度实时目标检测能力。该DETR方法的99%置信度和40毫秒处理速度可集成到阳光巡检设备,实现组件缺陷、热斑、遮挡物的自动识别。结合阳光SG逆变器的AI边缘计算能力和iSolarCloud云平台,该技术可实现电站全景智能监控,提升巡检效率,降低人工成本。边缘设备优化的TensorFlow Lite模型适合部署在阳光储能系统的边缘控制器,支持实时故障诊断和预测性维护。