← 返回
储能系统技术 储能系统 深度学习 ★ 5.0

基于物联网多传感器融合的关键特征与混合迁移学习活动识别

IoT-Based Multisensors Fusion for Activity Recognition via Key Features and Hybrid Transfer Learning

作者 Ahmad Jalal · Danyal Khan · Touseef Sadiq · Moneerah Alotaibi · Sultan Refa Alotaibi · Hanan Aljuaid
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 人类活动识别 RGB视频 惯性测量单元 特征提取 分类
语言:

中文摘要

人类活动识别HAR在医疗保健、智能家居和人机交互等领域备受关注。本文提出使用RGB视频和IMU传感器数据的综合HAR系统。系统采用多阶段处理流程包括预处理、分割、特征提取和分类,实现高精度活动识别。预处理阶段从视频提取帧,IMU数据去噪。分割阶段对视频帧应用朴素贝叶斯分割,对传感器数据应用汉明窗。关键特征提取技术包括图像数据的ORB、MSER、DFT和KAZE,传感器数据的LPCC、PSD、AR系数和熵。使用线性判别分析LDA进行特征融合创建统一特征集,然后使用ResNet50分类识别如使用智能手机、烹饪和阅读报纸等活动。系统在LARa和HWU-USP数据集上评估,分类精度分别达到92%和93%,证明所提HAR系统在多样场景下的鲁棒性和有效性。

English Abstract

Human activity recognition (HAR) has attracted significant attention in various fields, including healthcare, smart homes, and human-computer interaction. Accurate HAR can enhance user experience, provide critical health insights, and enable sophisticated context-aware applications. This paper presents a comprehensive system for HAR utilizing both RGB videos and inertial measurement unit (IMU) sensor data. The system employs a multi-stage processing pipeline involving preprocessing, segmentation, feature extraction, and classification to achieve high accuracy in activity recognition. In the preprocessing stage, frames are extracted from RGB videos, and IMU sensor data undergoes denoising. The segmentation phase applies Naive Bayes segmentation for video frames and Hamming windows for sensor data to prepare them for feature extraction. Key features are extracted using techniques such as ORB (Oriented FAST and Rotated BRIEF), MSER (Maximally Stable Extremal Regions), DFT (Discrete Fourier Transform), and KAZE for image data, and LPCC (Linear Predictive Cepstral Coefficients), PSD (Power Spectral Density), AR Coefficient, and entropy for sensor data. Feature fusion is performed using Linear Discriminant Analysis (LDA) to create a unified feature set, which is then classified using ResNet50 (Residual Neural Network) to recognize activities such as using a smartphone, cooking, and reading a newspaper. The system was evaluated using the LARa and HWU-USP datasets, achieving classification accuracies of 92% and 93%, respectively. These results demonstrate the robustness and effectiveness of the proposed HAR system in diverse scenarios.
S

SunView 深度解读

该多传感器融合识别技术可应用于阳光电源智能运维场景。阳光光伏电站和储能站需要工作人员行为识别和安全监控。该HAR系统的视频和传感器融合方法可部署在阳光电站巡检系统,识别运维人员操作行为,确保作业安全规范。结合阳光iSolarCloud平台的视频分析功能,该技术可实现电站人员活动智能监控,检测异常行为和安全隐患。在无人值守电站场景下,该系统可协助机器人巡检,识别设备状态和环境变化,提升智能运维水平,降低人工成本,保障电站安全运行。