← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

一种基于双流注意力机制的混合网络用于光伏发电预测

A Novel Dual-Stream Attention-Based Hybrid Network for Solar Power Forecasting

作者 Rafiq Asghar · Michele Quercio · Lorenzo Sabino · Assia Mahrouch · Francesco Riganti Fulginei
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏功率预测 双流混合模型 BiLSTM CNN 多头部注意力层
语言:

中文摘要

光伏发电功率预测对保障电网安全运行、降低运营成本具有重要意义。本文提出一种基于双向长短期记忆网络(BiLSTM)与卷积神经网络(CNN)的新型双流混合模型,通过并行提取时间与空间特征,并融合多头注意力机制强化关键特征选择。该模型在不同时间窗口、四季及天气条件下进行实验验证,并与三种单一模型和五种混合深度学习模型对比。结果表明,所提模型在多种气象、季节与气候条件下均具备优异的光伏功率预测精度。

English Abstract

Photovoltaic (PV) power forecasting is essential for providing accurate data on future power production, ensuring secure power grid operations, and reducing solar energy operation expenses. This research introduces a novel dual-steam hybrid model that uses Bidirectional Long-Short Term Memory (BiLSTM) and Convolutional Neural Networks (CNN) to predict PV power production. The proposed model employs a parallel processing technique, with BiLSTM and CNN analyzing input data independently to detect temporal and spatial features. These features are then combined and passed to the multihead attention layer to further identify the most desirable features for PV power forecasts. The proposed model’s performance is thoroughly assessed by a series of experiments that include various window sizes, four seasons, and different weather conditions. Subsequently, the predictive accuracy of the developed model is compared with three single and five hybrid deep learning models. The findings show that the dual-stream attention-based hybrid network can precisely predict future PV production across various meteorological, seasonal, and climatic conditions.
S

SunView 深度解读

该双流注意力混合预测模型对阳光电源iSolarCloud智能运维平台和ST系列储能系统具有重要应用价值。BiLSTM-CNN双流架构可集成至云平台的功率预测模块,通过多头注意力机制提升不同季节和天气条件下的预测精度,优化SG系列逆变器的MPPT算法动态响应。对PowerTitan大型储能系统,精准的短期功率预测可改进充放电策略制定,降低电网调度成本。该模型的时空特征并行提取思路,可启发阳光电源在构网型GFM控制中融合深度学习算法,实现储能变流器的预测性功率调节,提升新能源电站的并网友好性与经济效益。